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ABSTRACT 

The three-dimensionality of the near wake of bluff bodies at high Reynolds 

numbers is studied experimentally. Measurements were carried out in a 0.91mx 

0.91m wind tunnel (for Re=20000 to 60000) and flow visualisation in a 0.6mx 

0.6m water flume (for Re=2500). The main purpose is to identify inherent three- 

dimensional features that may also arise in nominally two-dimensional flows. In 

order to fix the three-dimensional effects in both time and space, a mild, periodic, 

geometrical disturbance was imposed on the otherwise two-dimensional geometry 

of a model with a blunt trailing edge. The trailing edge thus followed a sinusoidal 

pattern, but a straight edge model was also studied for comparison purposes. 

Quantitative measurements and flow visualisation revealed that a dual 

shedding frequency characteristic prevails in the wake of the sinusoidal model. 

Base drag shows a noticeable drop (in comparison to the straight edge model). 
Most of the activity seems to happen in the region of the peak, where the dual 

frequency characteristic is more apparent and also the base drag shows its largest 

variations. Flow visualisation showed different modes of vortex shedding to exist. 

Vortical structures in the x- and z- directions were observed for both models. coz 

vortices are present in the near wake. It is believed that the observed vortices are 

responsible for the intense base pressure fluctuations and gradients, and also for thin 
"wisps" appearing between Kärmän vortices in flow visualisation. 

A model for the dynamics of the formation region is proposed, by considering 

the interaction of mean, time-averaged quantities. It is suggested that forming 

vortices have a tendency to straighten-out. A concept is proposed which links the 

vortex formation length to other wake parameters, most notably wake width and base 

pressure. Wake similarity arguments are used in order to explain the shedding 
frequency variations along the span. 

The dynamics of vortex dislocations are also discussed. A mechanism is 

proposed which explains the significance of a characteristic dislocation frequency, f^ 

in the near wake dynamics. It is suggested that % is a result of the geometrical 
properties of the vortex filaments and that a link exists between the dislocation 

frequency and fluctuations in base pressure, vortex strengths and spanwise 
dislocation position. 
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1.        REVIEW OF PAST LITERATURE 

1.1     General remarks 

In fluid mechanics, we define as "bluff" a body which exhibits separated 

flow over a large portion of its surface, when subjected to a fluid stream. 

Throughout the century bluff bodies have attracted a significant amount of 

research in very diverse fields, ranging from mathematics to off-shore 
engineering. The interest shown in this field has primarily two causes: firstly, such 

flows are present in a variety of engineering applications and therefore their better 

understanding is of much importance, and secondly, as has been aptly put by other 

researchers, bluff body flows present a kaleidoscope of mutually interacting and 

challenging scientific problems worth investigating for their own sake. 

There are numerous complicated issues associated with bluff body flows, 
collectively known as "the bluff body problem". Generally speaking, such bodies 

generate a wake, in which unsteady phenomena are dominant. Our inability to 

solve the governing equations (the highly non-linear Navier-Stokes equations) 

makes it impossible to study all the details of such flows. This work will thus just 

aim to add to our still very incomplete understanding of bluff body wake flows. 

In this chapter, some large, simplifying steps will be taken at first to reduce 
our problem to a more simple one, and then a review of previous related published 

literature will gradually take it to more and more complex levels until the purpose 
of the present investigation is put into proper perspective. The first simplifying 

step will be the reduction of the number of dimensions from three to two. 

Furthermore, we will consider a uniform stream in which the two-dimensional 

body is submerged. We will consider the fluid to be Newtonian and 

incompressible. We shall start our review from the low Reynolds number regime 

and move upwards, were complications inevitably arise. 

1.2     The (nominally) two-dimensional flow past a bluff body 

1.2.1   Circular cylinder flows at different Reynolds number regimes 

The shape which has attracted the largest amount of research in bluff body 
flows is the circular cylinder in cross flow. Although geometrically simple, this 

problem presents us with a variety of aspects of these flows. At Reynolds numbers 
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above 5 vorticity generated at the surface can no longer be absorbed by the 

cylinder, and hence has to be shed downstream. As a result, the flow separates. A 

stable condition is now reached where we have two standing eddies immediately 

downstream of the body, forming a re-circulating bubble. At a higher Reynolds 

number (about 46) this steady flow pattern becomes unstable and the wake starts to 

oscillate in a periodic fashion. 

Although related effects (such as the wind-excited vibration of wires) had 

been known for quite some time, it was Strouhal in 1878 who first showed that the 

frequency of vibration could depended on the aerodynamic parameters of the body 

and not necessarily on the elastic properties, and hence comes the widely used 

Strouhal number, a non-dimensional measure of the oscillation frequency. In 

1911, von Kärman proposed his well known theory of the vortex street, by 

modelling the periodic wake with two infinite rows of point vortices of opposite 

signs. By solving for the stability of the vortex street, he predicted a relation 

between the lateral and the streamwise spacing of the point vortices. For a number 

of years, not much was added to our understanding of wakes, although alternating, 

periodic wakes were visualised in numerous studies. 

The first systematic and fundamental study in the "modern era" of bluff 

body wakes is perhaps due to Roshko (1953). In that study, he derived a much- 

used empirical formula linking the Strouhal number to the Reynolds number. He 

also observed the existence of another transition range (between Re=150 and 

Re=300) where the vortices become turbulent. In a further publication (1954), an 

attempt is made to explain the various physical quantities that interact in the wake, 

such as drag and shedding frequency. Although the drag prediction methods 

described are perhaps a bit too ambitious, this work is important because it 
introduces the concept of wake similarity, whereby wake parameters such as width 

and base pressure (rather than geometrical parameters) are said to be the directly 

relevant factors in the selection of the Strouhal number. 

An extension to von Rinnan's discrete vortex model was proposed by 

Schaefer and Eskinazi (1959), who assumed that the vortices were viscous with a 

core of finite size. The size of the core was growing with time (according to the 
analytic Navier-Stokes solution for an isolated vortex), with time=0 being taken 

as the moment of vortex formation behind the cylinder. By considering the 
interaction of the vortices they postulated the existence of three regions in the 

wake, the formation region (close to the body, where the vortices are formed), the 
stable region (after the formation region, the region where the viscous vortex core 
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interactions are small) and the unstable region (further downstream, where vortex 
cores start to overlap). Comparison with experiments showed that this approach 

gave a good qualitative explanation for measured velocity patterns in the wake. 

The importance of the formation region dynamics to the overall flow 

pattern was emphasised by Gerrard (1966b). A variety of important concepts were 

introduced in this paper. It was proposed that a significant parameter in the 

formation of a vortex street is the interaction between the two separated shear 
layers of oppositely signed voracity. Figure 1.1 is a schematic diagram of the 
various entrainment flows which are said to play an important role in the 
formation region. Here we see a vortex growing as it is being fed with vorticity 

from the upper shear layer. At one stage it becomes strong enough to draw the 

opposing shear layer across the wake. The vorticity carried by the opposing shear 

layer is then entrained in three possible directions: Most of it (arrow a) gets drawn 

into the forming vortex and thus reduces its strength, but there is also entrainment 

into the shear layer (arrow b). The remainder (arrow c) finds its way into the near 

wake. 

The size of the formation region is determined by the balance between 

these entrainment flows. It is argued that flow (a) remains relatively constant with 

changes of the Reynolds number. The turbulence level of the shear layer 

determines the magnitude of entrainment flow (b). For example, if the shear layer 

becomes turbulent at a point closer to the body, flow (b) will increase, and the 
forming vortex will be weaker. As a result, the reversed flow will also decrease, 

and the initial increase in flow (b) will not be balanced by an increased flow into 

the formation region. Hence the whole formation region will have to shrink in 

length. Another important parameter highlighted in this paper is the width of the 

shear layer at the end of the formation region. A thicker (more diffuse) layer will 

take longer to be entrained, and hence the instant at which vorticity fed into the 
forming vortex is cut off will be delayed, with a resulting drop in shedding 

frequency. A further consequence of a more diffuse shear layer will be the 
increase in strength of the forming vortex. 

This qualitative explanation on how some of the very important wake 

parameters interact does not really solve the problem (and no claim to that effect is 

made). The number of relevant parameters is too large and too complex as, for 
example, an increase in the Reynolds number may result in two "competing" 

phenomena, and no apparent effect on the shedding frequency. Nevertheless, it is 
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Figure 1.1       Schematic diagram showing Gerrard's entrainment flows (from Gerard, 1966b). 

Tr.imiti'm wavra a( lie =  l!MW. 

Figure 1.2      Transition waves in the wake of a circular cylinder (from Gerard, 1978). 



important to be able to understand the elementary formation region dynamics 
which are governed by a balance (and feedback) between many related quantities. 

Gerrard (1978) presented a visualisation study of the flow around cylinders 

of different sections (mostly circular) at a wide range of Reynolds number 

(30<Re<2000+). Smaller scales of fluid motion were observed at Re > 350, 

which the author calls transition waves. These are said to be related to the 

transition to turbulence. As the Reynolds number increases they become stronger 

and move closer to the cylinder (see figure 1.2). In some cases they interact 

strongly with the forming vortices and suppress vortex shedding for short periods. 

A different aspect was presented by Cantwell and Coles (1983) who used a 

"flying hot-wire technique" in conjunction with conditional averaging and triple 

velocity decomposition to obtain the -flow field around a circular cylinder for 

Re= 140000. The advanced experimental technique used gave them some insight 
into the topology of material lines and turbulent production in one shedding cycle, 

shown schematically in figure 1.3. Here we see the evolution of the material lines 

over half a shedding cycle. The paper mainly concentrated on the production and 

transport of turbulence. A substantial fraction of the turbulent energy was found to 

be produced at primarily intermediate or small scales, near flow field saddles. It 

was then transported to and accumulated at centres (stagnation points at the large- 

scale vortices). 

Circular cylinders, mainly due to the moving point of separation, present a 

plethora of interesting and complicated wake phenomena. Their wake structure and 

properties are largely dependent on the Reynolds number, as has been indicated 

above, and they have attracted a large number of studies. It would not be 

appropriate in this short review to attempt to go into all the fine details of circular 

cylinder flows when proper attention is given to them in dedicated reviews, such 

as that by Coutanceau and Defaye (1991). 

1.2.2  Means of two-dimensional flow control 

A very useful tool in our understanding of bluff body wakes has been the 

use of splitter plates in the centre of the formation region. Their positioning is 

"strategic" as the presence of a splitter plate can reduce or delay the interaction 

between the two shear layers, which was shown earlier to be the dominant cause 

of vortex shedding. Bearman (1965) investigated the effect of splitter plates of 

different lengths attached to a model with a blunt trailing edge. Their effect was 
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Phase 

Figure 1.3 Schematic representation for the step-by-step topology of material lines over half 

a shedding cycle in the turbulent wake of a circular cylinder. Fluid particles that are not allowed 

to cross a separatrix at the near wake must eventually find their way into a Karman vortex (from 

Cantwell and Coles, 1983). 



found to be the delay of the shear layer interaction until after the end of the 
splitter plate with a consequent increase in formation length. Base drag was found 

to vary in inverse proportion to the formation length (figure 1.4), as an increase in 

formation length would cause the forming vortices to be weaker and further away 

from the body. Beyond a certain splitter plate length (but before the necessary 

length for re-attachment to occur) Bearman observed a complete suppression of 

vortex shedding. The effect of a splitter plate at a distance from the body has been 

investigated by Roshko (1954) and, more recently, by Mansingh and Oosthuizen 

(1990). In both cases, the results were quite similar to those of Bearman, but for 
sufficient gaps between the splitter plate and the model vortex shedding would 

resume in a manner similar to that for no splitter plate. The effect of base bleed on 

bluff body flows was investigated by Bearman (1967a), with similar conclusions 

regarding the dependence of the base drag on the formation length. Small 

quantities of bleed were capable of causing a significant reduction in drag, while at 

larger bleed rates vortex shedding could be suppressed. 

Flows around oscillating bodies essentially follow the same basic rules but 

have the added ingredient of the interaction between the natural shedding 

frequency and the frequency of oscillation. Three of the reasons they have 

attracted a lot of attention are (a) their relevance for the study of wind-excited 
vibrations, (b) their prospects in terms of control of vortex shedding, and (c) under 

many circumstances the body oscillation acts as a pulse to keep shedding in phase 
along the span, and the flow hence becomes two-dimensional, which is an 

attraction for the comparison of two-dimensional CFD codes to experiments. For 

oscillation amplitudes above a critical threshold value, the frequency of wake 

oscillation can be forced to follow the forcing frequency (if the forcing frequency 

is not too different from the natural wake frequency). This is called "lock-in" and 

can also occur for other kinds of periodic forcing. The relevance of these flows to 

our problem as a whole is demonstrated in two review papers, by Bearman (1984) 

and by Griffin and Hall (1991). Further study of these flows is beyond the scope 

of this investigation. 

1.2.3   The stability characteristics of a wake 

The concepts of absolute and convective instabilities have been around for 
about forty years, but were mainly used in plasma physics. The significance of 

these concepts on bluff body wakes, however, has only emerged recently. Bers 

(1983) provides the basic theoretical and conceptual framework for the 

understanding of these principles. Figure 1.5 illustrates the possible evolution of a 
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Figure 1.4      Base pressure coefficient as a function of the inverse of the formation length 

(from Bearman, 1965). 
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Figure 1.5       Time evolution of a pulse in media of one dimension and different stability 

characteristics (from Bers, 1983). 



pulse in one dimension and time. If the medium is absolutely unstable, the 
disturbance will grow in time and space, so that eventually, at every point in 

space, it will be growing with time. If the medium is convectivefy unstable, the 

disturbance will propagate away from its source in such way that although it grows 

with time, at any given point in space it will eventually die off. Finally if the 

medium is stable, the disturbance will die off in both space and time. We should 

also make a distinction between local modes, where the instability characteristics 

are confined to a limited region and global modes, where the instability 

characteristics spread over a large portion of the flow. Numerous studies over the 
last ten years have linked these concepts to wake flows. These principles are 

surrounded by a considerable mathematical complexity which this study will not 

enter. Nevertheless, an appreciation of the various kinds of instability can aid our 

understanding of the fundamental mechanisms governing vortex shedding. 

Huerre and Monkewitz (1985) mainly concentrated on applying the 

stability principles to free shear layers, only mentioning wakes briefly. It has been 

generally accepted that wake flows have a region of absolute instability in the near 

wake (loosely associated with the reverse flow region), and that further away from 

the body the instability is of the convective type. The absolutely unstable region is 

thought to be of fundamental importance for the self-sustainment of the wake. 

Monkewitz and Nguyen (1987) investigated various criteria for the selection of the 

shedding frequency. They postulated the intrinsic wake response to be the 
resonance between upstream and downstream travelling waves. Triantafyllou, 

Triantafyllou and Chryssostomidis (1986 and 1987) solved the inviscid Orr- 
Sommerfeld equation for measured wake velocity profiles to predict the shedding 

frequency with good accuracy. The stability studies mentioned assumed the mean 
flow to be parallel. The validity of this simplification was discussed by 

Hannemann and Oertel (1989), who compared the stability analysis results to those 

of a Navier-Stokes code and concluded that the assumption is good enough for a 

qualitative understanding of the wake dynamics. Their work also examined the 
effects of base bleed from the stability point of view. Similarly, Karniadakis and 

Triantafyllou (1989) examined the oscillating body problem in conjunction with 

stability analysis. Finally, the term global instability was discussed recently by 

Chomaz, Huerre and Redekopp (1988). They noted that a local absolute instability 

was not sufficient always to cause a globally unstable wake, and that it would have 

to be of large enough size for the instability to become self-sustainable. 

The usefulness of the above-described instability concepts is now generally 

accepted. We should be careful, however, not to treat them as a panacea. The fact 
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that it is an instability that causes the periodic wake has been appreciated for a 

long time (e.g. Roshko, 1953). Similarly the need for a feedback mechanism to 

exist has been emphasised in the past (e.g. Gerrard 1966b). The relatively recent 

emergence of the absolute-convective instability ideas should be seen as a 

confirmation of these older hypotheses. We should also be able to see their 
drawbacks, which include some over-simplifications such as studying the stability 

of the mean, parallel flow, not taking into account the presence of the body 

(which in reality reflects as well as absorbs instability waves) and the inadequacy 

in terms of dual frequencies sometimes observed in wake flows (as, for example in 

cases when both large-scale and small-scale vortical structures are of importance). 

As is mentioned by Monkewitz and Nguyen (1987), the wake problem has been 

traditionally approached along three main lines. The first deals with "integral 

effects", such as drag and shedding frequency and tries to explain their interaction. 

The second line concentrates on the vortex dynamics of the developed wake. The 

third approach consists of analysing the stability of the mean velocity profile in the 

wake. We should not really view these approaches as competing or mutually 

exclusive. What would seem to be the most promising approach to the wake 

problem would be a theory that effectively combines all three of these main lines. 

Unal and Rockwell (1988a) attempted such a link between experimental 

observations and the absolute-convective instability concepts. They raised a 

question over the relative importance of upstream Biot-Savart induction as a 

feedback mechanism compared to the upstream travelling waves due to the 

absolute instability (of course there arises another question on whether these two 

mechanisms are really different from each other). Either way, they suggested that 

the "upstream influence" mechanism is the main reason why the large-scale vortex 

formation frequency dominates over the small-scale Bloor-Gerrard vortices that 

appear in the shear layer. As two further limitations of the instability theory they 

sited the existence of these two frequencies (the small-scale one of which may be 

three-dimensional), and also the non-linearity of the disturbance which can not be 
predicted by a linear theory. In Unal and Rockwell (1988b) they explained the 

influence of a splitter plate in terms of the stability characteristics of the wake. It 
was further emphasised that the large-scale vortices are caused by an absolute 

instability, with their fundamental harmonic (fv) dominating (as a result) over the 

other harmonics (n*fv), due to the self-sustaining nature of the absolute instability 

region. On the other hand, the shear layer instability of Bloor-Gerrard small-scale 

vortices is of the connective type and hence (a) it does not grow much in the near 

wake region, and (b) frequency components associated with this small-scale 
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frequency become quite apparent, as they evolve from secondary instabilities 
related to the fundamental harmonic. 

The wake control methods described so far (base bleed, splitter plates, 

oscillating body) represent a global forcing of the wake (i.e. the global stability 

characteristics are changed). A local forcing of the wake was investigated by 

Williams, Mansy and Amato (1992). They applied a symmetric excitation on the 

boundary layers of a circular cylinder at small distances upstream of the separation 

points. It was found that they could control the shedding mode even by this very 

local form of excitation. This strengthens the view that the separated shear layers 
play an important part in the feedback mechanism that, in turn, controls the 

generation of the vortex street, although, it has to be said, no reference is made to 

the importance of the separation points. 

1.2.4  The distinctions between two- and three-dimensionality 

We should perhaps make a note here of the significant distinctions between 

two-dimensionality and three-dimensionality. In the early years it became 

increasingly obvious to experimentalists that despite efforts to achieve a perfectly 

two-dimensional flow, this was almost always practically impossible. Perfect two- 

dimensionality (where along the one axis velocity and derivatives are all zero) 
could be achieved in very restricted (and seldom realistic) conditions. That the 

two-dimensional approach has survived even to this date should not surprise us, 
however. The basic dynamics of the formation of a vortex street are two- 

dimensional. Clearly for a complete theory on vortex shedding we should have a 
comprehensive understanding of the two-dimensional phenomena, even if in the 

real world they never occur in such an isolated form. 

The term "nominal two-dimensionality" has also been used. Here, even 

though there may be either small-scale irregularities (turbulence) or larger-scale 

irregularities along the span, they do not show any particular spanwise preference 

and hence all the statistical properties of the flow remain constant over some 
portion (at least) of the span. Even though many studies that fall in this category 

totally avoid the subject of three-dimensionality, their importance too should not 
be underestimated, as the physical significance of some three-dimensional 

phenomena can sometimes be more clearly highlighted through two-dimensional 
considerations. For example, although the transition to turbulence by definition 

implies a transition to three-dimensionality, significant gains in our understanding 

can also be made if one studies it macroscopically, and simply considers the effect 
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of turbulent diffusion which (under certain conditions) can be thought of as a 

nominally two-dimensional phenomenon. 

1.3     The three-dimensional flow past a bluff body 

The existence of three-dimensional characteristics, even in what one would 

expect to be two-dimensional flow, has thus been recognised for many years. For 

example, Tritton (1959) provided flow visualisation evidence on wavy or oblique 

vortex lines. It is now generally accepted that his transition at Re*90 is in fact 

associated with a three-dimensional effect (actually, an end effect). 

It is obvious that any real cylinder has to be of finite length. The question 

is not whether there will be end effects or not, but how far into the span these 

effects will be felt, and if there will be any part (perhaps in the region of the mid- 
span) where the flow can be considered to be two-dimensional. Similarly, it is 

obvious that at sufficiently high Reynolds numbers the flow will be turbulent and 

hence three-dimensional. The cause of this turbulence must be some form of an 

instability. Therefore, the second question that arises is not whether there will be 

an instability that will cause a transition to three-dimensional turbulence, but 

whether there will be an inherent instability that can cause larger-scale three- 

dimensionality (perhaps at the scale of the Kärmän vortices) before or after that 

onset of turbulence. In this section we will briefly go through some of the most 

important previous work that has been done on the three-dimensionality of wakes. 

1.3.1   Oblique vortex shedding and end effects 

A relatively simple three-dimensional phenomenon that occurs even at low 
Reynolds numbers is that of oblique vortex shedding. In this case, if we consider a 

cylinder, the axes of the vortex filaments will form an oblique angle w.r.t. the 
cylinder axis. This was observed as early as Tritton (1959), while Gerrard (1966a) 

observed oblique vortices for low Reynolds numbers (up to 235), but parallel 
shedding for Re=20000. In Gerrard (1978) he observed "bowed" vortices at 

certain Reynolds numbers, and proposed end effects to be the cause. The 
importance of such effects has recently been put beyond dispute by Williamson 

(1988 and 1989). In experiments in a towing tank with large aspect ratio cylinders 
he observed an initial parallel shedding configuration, while the oblique mode 

would start from the ends and move progressively inwards, until a chevron-shaped 

pattern was established (figure 1.6). This proved that there could be various 

inherent solutions (oblique and parallel) to the flow equations, the choice of which 
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Figure 1.6 Development of an oblique shedding mode in the wake of a circular cylinder at 

Re=95 (flow is upwards). Photo (a) was shot when the cylinder had travelled a distance 

x/D=100. Later on, at x/D=600 (photo (b)), the oblique mode has propagated inwards from the 

ends to form a chevron-shaped pattern (from Williamson, 1989). 



solely depended on the end effects. He also proposed the use of the formula S0= 

Se/cos(e) (where 9 is the oblique angle, Se the measured Strouhal number, and S0 

the universal Strouhal number), in which case all discontinuities are removed from 

the Strouhal-Reynolds curve for Re < 180. 

Numerous researchers have found that by manipulating the end conditions 

one can achieve parallel shedding as the stable solution for the flow. They include 

Williamson (1989, by angling the end plates and 1992b, by suction in the 

formation region at the two ends), and Eisenlohr and Eckelmann (1989, by using 

"end cylinders" with a larger diameter). Gerich and Eckelmann (1982) studied the 

effect of free ends and that of endplates. The most important conclusion of this 

work was the existence of what they called the "affected region", for 

approximately 10D from the cylinder ends, confirmed also in Williamson (1989). 

This was said to be the region under direct influence from the ends, where a lower 

shedding frequency was observed. Eisenlohr and Eckelmann (1989) proposed a 

possible vortex structure close to the end plate (figure 1.7), where Kärmän 

vortices partly loop across the wake to join with their counterparts on the other 

side of the wake, and partly join the horseshoe vortex generated at the end plate 
boundary layer. Velocities induced by this structure, it was claimed, oppose the 

free stream and thus cause the drop in the shedding frequency of the affected 

region. 

1.3.2  Two important three-dimensional mechanisms 

The situation thus arises where we have two neighbouring cells (affected 

region-unaffected region) that shed at different rates. Similar cells shedding at 

different frequencies have been observed in a wide variety of flows and it was 
suggested by Gerrard (1966a) that the two possible mechanisms to accommodate 

this are "vortex splitting" and what one may call "vortex looping". In vortex 
splitting, as we approach the boundary of a cell, a vortex filament splits and thus 

gets linked to two vortices of the same sign at the other side of the boundary. In 

vortex looping a Kärmän vortex loops across the wake to get connected with 

another vortex (with oppositely signed vorticity) on the other side of the wake. 

We should see both the above phenomena as topological consequences of a 

spanwise step-change in a certain quantity as we cross the boundaries of a cell. 
Vortex splitting can accommodate a spanwise change in the timing of a vortex, 

either because there is a phase difference across the cell boundary, or because the 

shedding frequencies across this boundary are different. Vorticity shed per unit 
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Figure 1.7      A possible vortex structure close to the end-plate of a circular cylinder (from 

Eisenlohr and Eckelmann, 1989). 

Figure 1.8       Vortex splitting in the wake of a circular cylinder at a low Reynolds number 

(from Eisenlohr and Eckelmann, 1989). 



time on one particular side of the wake remains unchanged across the boundary, 

but simply gets re-distributed to Kärmän vortices in a different way. On the other 

hand, vortex looping does not accommodate a spanwise change in vortex timing, 

but does result in different amounts of vorticity shed per unit time on either side of 

the cell boundary. We should also bear in mind that these two phenomena can also 
occur simultaneously, as the one does not exclude the other. 

Vortex looping is usually observed when there are strongly three- 

dimensional effects somewhere along the span, such as a free end or an end plate 

(Eisenlohr and Eckelmann 1989, discussed earlier). It has not been observed, 

however, when the spanwise disturbance is only mildly three-dimensional. Vortex 

splitting has been observed by numerous researchers including Gerrard (1966a and 

1978),Gaster (1971), Eisenlohr and Eckelmann (1989, figure 1.8), Nuzzi et al 

(1992) and Williamson (1989,1991 and 1992a). All of them identify it as a key 

feature to accommodate spanwise shedding frequency variations. Williamson 

(1992a and earlier papers) uses the term "vortex dislocations" to describe the 

complex inter-linking across a cell boundary. 

1.3.3   Inherent three-dimensional patterns in nominally two-dimensional flows 

We have now identified a key three-dimensional feature of bluff body 
flows (vortex splitting). While with parallel shedding, or oblique shedding, the 

spanwise correlation of two velocity signals (or any other quantity fluctuating at 

the Kärmän frequency) will be quite high, the occurrence of vortex splitting will 

drastically reduce that correlation. Evidence from experiments suggests that, 

especially at high Reynolds numbers, irregularities such as vortex splitting can 

occur at arbitary positions along the span (for a nominally two-dimensional model) 

and at random instants in time. Thus the degree of such three-dimensional 

behaviour could be quantified by measuring the correlation length. Typically, for 

turbulent wakes the correlation length is of the order of a few diameters, but the 

exact reason for the irregular three-dimensionalities is not fully understood, and 

the correlation length can not be predicted. 

Graham (1969), investigated the effect of end plates on the correlation 

length of a D-section bluff body. He found that if the end plates were within one 

correlation length apart (as measured for a large aspect ratio body), vortex 
shedding would be in phase along the whole span. Otherwise, irregularities would 

appear in the flow. Similarly, Szepessy and Bearman (1992) found the fluctuating 
lift (at the centre-span of a circular cylinder) to increase as the end plate separation 
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decreased.  They suggested that at large apect ratios cross flow was more 
prominent, which resulted in weaker vortices (and lower lift fluctuations). 

Generally speaking, stronger three-dimensionalities in bluff body flows 

have usually resulted in lower forces (drag or lift). Tanner (1972), for example, 

achieved significant reductions in drag (up to 64%) for aerofoils with a blunt 

trailing edge by breaking the separation line. Similarly, Zdravkovich et al (1989) 

investigated the flow around short cylinders with two free ends. They observed 

vortex shedding for apect ratios as low as 2, but drag reduction only down to 

aspect ratios of 6 (the main reason for the drag reduction being the inflow from the 

free ends). It may not be a coincidence that two-dimensional numerical schemes 

tend to over-predict lift and drag. There may be some inherent, drag-reducing 

three-dimensionality even in well set-up "two-dimensional" experiments. 

In recent years there has been a large increase in the number of studies 
concerned with just that point: is there an inherent three-dimensional instability, 

irrespective of end conditions? Triantafyllou (1990) used linear stability theory to 

study three-dimensional flow patterns in wakes. He differentiated between two 

kinds of such patterns. The first one was said to be due to localised 
inhomogeneities of the flow or the body which generate "guided" three- 

dimensional waves. Linear resonances can then spread coherent three-dimensional 

patterns through the entire wake. Though a linear theory, he also explained how 

end conditions (such as the end cylinders used in Eisenlohr and Eckelmann, 1989) 
can cause two-dimensionality at the centre of the span. The second kind of three- 

dimensional pattern was said to be the development in the average flow of steady 
modulations that cause three-dimensional instability patterns. Triantafyllou 

identified this pattern as a secondary instability, adding that it would also arise in 

an infinite body, and that it occurs at Reynolds numbers above 200. 

Further important numerical work was reported in Karniadakis and 

Triantafyllou (1992) who proposed that the main route to chaos is though the 

"period-doubling scenario". They attributed the period doubling phenomenon to 
the presence of two three-dimensional absolute instability modes in the near wake. 

The flow was then said to alternate between these two modes, thus repeating itself 
only after twice the time it would normally take to do so. It was then proposed that 

successive period doubling bifurcations are the cause for transition to chaos and 

turbulence. 
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The evolution of the flow at high Reynolds numbers as we move towards 

the far wake has also attracted considerable attention. From a stability point of 

view, the main characteristic as we move away from the body is that the absolute 

instability vanishes, and the instability is now of the convective type. It has been 

observed that in the far wake there tends to be a decay in the main, Kärmän 

frequency component and an appearance of lower frequencies. Browne et al (1989) 

proposed that this is due to the interaction of large vortical structures at both sides 

of the wake. Similarly, Ferre" and Giralt (1989) observed this rapid destruction of 

individual vortices with a resulting randomisation of the vortex street, and the 

appearance of complicated "double roller" vortical structures. Further discussion 

on the re-organisation of the vortex street in the far wake is included in Bisset et al 

(1990a and 1990b). Finally, Corke et al (1992) studied the growth of three- 

dimensional modes in the wake of a two-dimensional body. They concluded that a 

fundamental mechanism for their growth is the resonance between the fundamental 

(Karmän) mode and the three-dimensional instabilities. The complicated aspects of 

far wakes have been touched here in a very superficial way, just to illustrate how 

important our knowledge of the fundamental three-dimensional dynamics of the 

near wake may be to the flow further downstream. The present investigation, 

however, will concentrate on the direct body-flow interaction, and therefore we 

will concern ourselves predominantly with the near and the intermediate wake. 

L3.4  Imposed three-dimensionality in wakes 

So far, in our review of studies aiming to understand inherent three- 

dimensional flow behaviour, all of them (be they computational of experimental 

studies) were essentially concerned with the growth of three-dimensional 

instabilities in a "two-dimensional" wake. Some recent studies have approached 

this subject from a different angle. Their common aspect is that they investigated 

three-dimensional patterns imposed by geometrical disturbances on the body. The 

main reasoning behind this approach is that by doing so, the three-dimensional 

characteristics that appear irregularly behind a two-dimensional body may now 

appear more regularly in space and time and thus be more easy to study 

experimentally (in contrast, studies of effects such as end plates, oncoming shear, 

etc. do not impose three-dimensionality in such a controlled way, but rather 

approach it as an inevitable feature of the flow). 

In an interesting study, Breidenthal (1980) compared the response of plane 

shear layers to strong three-dimensional disturbances to that of wakes. Whereas the 
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shear layer quickly relaxed to a two-dimensional pattern (in terms of the large 

vortical structures), the wake retained its three-dimensionality far downstream of 

the body (figure 1.9). A few interesting conclusions can thus be drawn. 

Breidenthal observed that both the wake and the shear layer behaved as if they 

"wanted" to minimise the volume of rotational fluid. In the case of the shear layer 

there is predominantly one sign of vorticity shed from the model. Vortex lines 

must start from one wall of the test section and end in the other. In that way, their 
most "economic" (least energetic) arrangement seems to be in two-dimensional 

large-scale vortical structures. On the other hand, in the case of the wake we have 
two signs of vorticity shed from the model (and at equal quantities). In that way 

the least energetic arrangement seems to be in closed loops that show little 

tendency to grow in the spanwise direction. Topologically, the formation of these 

loops is only possible because of the presence of the opposite shear layer. Hence, 

it seems that a hypothesis originally made by Roshko is confirmed: the asymptotic 

state for the plane shear layer seems to be predominantly two-dimensional, 
whereas the asymptotic state of the wake (two interacting shear layers) seems to be 

three-dimensional. 

Nuzzi, Magness and Rockwell (1992) reported on the effects of body 

oscillation on vortex formation from a non-uniform circular cylinder (for 

Re =145). The cylinder had a smooth neck at mid span with a minimum diameter 

a bit smaller (by 20%) than the diameter of the uniform part. At a certain 

oscillation frequency global lock-in was observed and even though the vortices 

shed were three-dimensional, their structure was repetitive from cycle to cycle 
(figure 1.10). At slightly lower forcing frequency, however, the flow from the 

non-uniform part of the cylinder experienced a period-doubled response, while the 

flow from the uniform part remained locked-in (figure 1.11). In the period- 

doubled portion, the vortices would alternately be first normal and then split, in 

terms of their joining with the vortices from the locked-in region. Various other 

flow patterns were observed for different oscillation frequency regimes. 

Two interesting comments can be made about these results. First, they 

seem to tie in well with the period-doubling scenario predicted in Karniadakis and 
Triantafyllou (1992) due to two competing, inherently three-dimensional flow 

modes. Second, they raise a question about the coupling between the flows in 

adjacent sections of the body. Lock-in has been achieved by a wide variety of 

possible forcing methods (sound, transverse oscillation, streamwise oscillation, 

periodic rotation, etc.). The results of Nuzzi et al indicate strongly that some kind 

of frequency forcing can also be transmitted in the spanwise direction, a fact 
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Figure 1.9 Top: side and plan views of a wake responding to a strong three-dimensional 

disturbance. The flow retains its three-dimensionality far downstream. Bottom: side and plan 

views of a shear layer responding to a similar disturbance. The shear layer quickly relaxes to a 

two-dimensional pattern. Hence we can conclude that the asymptotic state of a wake is three- 

dimensional, while the asymptotic state of a shear layer is two-dimensional (from Breidenthal, 

1980). 



Figure 1.10     Spanwise visualisation of global lock-in achieved in the wake of an oscillating 

non-uniform circular cylinder at Re=145 (from Nuzzi, Magness and Rockwell, 1992). 

Figure 1.11 Spanwise visualisation of period-doubled vortex formation, achieved in the wake 

of an oscillating, non-uniform circular cylinder at Re=145. N=l and N=2 correspond to 

maximum positive displacement, while N=3/2 and N=5/2 correspond to maximum negative 

displacement. Comparing N=l with N=2 (and also N=3/2 with N=5/2) we can see that the same 

pattern is not repeated at each cycle, but only at every other cycle, i.e. the period has been 

doubled (from Nuzzi, Magness and Rockwell, 1992). 



which may not be surprising as such, but which may explain why non-uniform 

flows tend to organise themselves in spanwise cells of different frequencies. 

In Williamson (1992a) the flow around an otherwise uniform cylinder (of 

large aspect ratio and at low Reynolds numbers) was perturbed by a ring of 

slightly larger diameter fastened at mid-span. This disturbance caused two-sided 
vortex dislocations to appear regularly downstream of the ring, as the ring would 

shed vortices at a lower frequency than the rest of the cylinder. The predominant 

dislocation frequency was the beat frequency (fcylmder~fring)- Williamson reached 
several interesting conclusions regarding the fine structure of dislocations at these 

low Reynolds numbers. He proposed a mechanism whereby the dislocation spreads 

in the spanwise direction. In figure 1.12a, we can see how the rotation of the main 

vortex C causes its branches, vortices A and B to helically rotate about each other, 

thus inducing an axial component of velocity, that would tend to further split 

vortex C. The induced strain rates form A and B are shown in diagram 1.12b. The 

further "unravelling" of vortex C will effectively cause the spanwise dislocation 

spread. Williamson suggested also that the cores out of the dislocation would tend 

to become thicker and leave behind them thinner, stretched vortex "wisps" within 

the dislocation, as a result of the induced axial motion (figure 1.13). The vortex 

wisps within the dislocation were then said to reorganise themselves into "A- 

vortices", the predominant structure observed within the two-sided dislocation 

(figure 1.14). 

Williamson's proposed ideas concerning the detailed structure of 

dislocations are very useful but should perhaps be treated with some degree of 

caution, especially for their applicability to higher Reynolds numbers. For 

example, even though the velocity induced on the particular fluid element at the 

point where the vortex filament splits (in figure 1.12a) may be in the direction 

shown in the diagram, it is still possible that the two vortices A and B will merge 

at that point under the influence of diffusion or turbulence (at higher Reynolds 

numbers). In that way although the fluid element at the vortex "junction" may 

move in the direction suggested by Williamson, the junction may in fact appear to 

move in the opposite direction. The fact that the low frequency cell appears to 

spread gives an indication that higher frequency vortices (linked though vortex 

splitting to a smaller number of lower frequency vortices) may indeed be rolling 
up and merging, even at the low Reynolds numbers considered by Williamson. 

In closing this brief review on three-dimensional wakes, it would be 
appropriate perhaps to mention attempts that have been made to mathematically 
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Figure 1.12 Williamson's proposal for the motion of a "vortex junction": In (a) we see two 

vortices (A and B) of similar sign joining together (into C). The vortices will tend to twist 

helically and thus induce an axial velocity at the core of the vortex junction. This, in 

combination with the straining mechanism shown in (b) will cause vortex C to further unravel 

and the dislocation to spread (from Williamson 1992a). 
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Figure 1.13 Williamson's proposal for the creation of vortex "wisps": A non-uniformity 

causes the vortex tube to twist. The helical arrangement of vortex lines within the vortex tube 

will induce an upward axial flow that will tend to "fatten" the vortex tube away from the non- 

uniformity leaving a thin vortex "wisp" at the region of the non-uniformity (from Williamson 

1992a). 
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Figure 1.14     (Following from figure 1.13) the resulting structure from a local model non- 

uniformity: vortex wisps have organised themselves into A-structures (from Williamson 1992a). 



model three-dimensional wakes. Notable examples here are Gaster (1969) and 

Noack et al (1991). In both investigations a simple van der Pol oscillator was used 

to model each cross section of the flow. By selecting appropriate characteristics 

(according to the spanwise conditions-diameter, free stream velocity, etc.) and 

coupling parameters between neighbouring cells, the cellular type of flow was 

predicted quite impressively in both cases. It seems therefore that this method is 

quite useful to give us a basic understanding of the phase-frequency relationships 
along the span, although it goes without saying that we should not expect any real 

insight into the details of vortex dynamics and the transition to turbulence from 

such a simplistic model. 
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2.        INTRODUCTION TO THE PRESENT INVESTIGATION 

2.1     Aims of the project 

2.1.1   Areas of importance and interest 

There can be no doubt that our understanding of three-dimensionality in 

wakes has improved considerably over the past few years. There are many reasons 

which necessitate our better understanding of three-dimensional wakes. In real-life 
engineering problems flows are never two-dimensional, yet most of our efforts, so 

far, have been in investigating such flows. A better understanding of the Kärman 
vortex street dynamics would eventually enable us to have better control over 

parameters such as the intensity of vortex shedding and consequently, the drag and 

the fluctuating forces acting on bodies (due to their unsteady wakes) could be 

controlled to a greater extent. 

An experimental investigation into three-dimensionality could also provide 

a two-fold contribution to computational simulations. First, two-dimensional 

simulations have traditionally over-predicted quantities like drag or fluctuating lift 

(e.g. Braza et al, 1986). It is therefore important to be able to understand the 

reason of this over-prediction and see whether it is due to a general inability of 

two-dimensional codes to match real-life flow conditions. Second, as computers 

become more and more powerful, a number of cautious steps have been taken by 

various C.F.D. investigations in the direction of three dimensions (e.g. 

Karniadakis and Triantafyllou, 1992). As even the power of modern super 

computers is still not sufficient to simulate three-dimensional flows down to their 
smallest scales, it is vital to have sufficient information about the nature of the 

complex flow patterns (as a means of comparison and code validation). 

It is now widely accepted that, at least at high Reynolds numbers, three- 

dimensionality is a key feature of wakes, irrespective of the end conditions. As 
was indicated in the previous chapter, numerous investigations have given 

sufficient evidence that an inherent instability causing three-dimensional effects 
would be present even if we could achieve a perfectly uniform flow around a 

perfect model with an infinite span. It is thus proposed that the main aim of this 
investigation be the achievement of a better understanding of this inherent three- 

dimensionality of bluff body wakes. 
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Turbulence is of course a very prominent feature of high Reynolds number 

flows, and by the nature of its most notable feature (vortex stretching) is heavily 

three-dimensional. The majority of the investigations into wake three- 

dimensionality has been for low Reynolds numbers (within the laminar flow 

regime), mainly due the ease of study of such flows. While these studies have 

illustrated many interesting wake flow structures, it is important to see to what 

extent high Reynolds number flows show similar properties and features under the 

influence of turbulence. A further intention of this study is thus to fill this gap, 

and investigate higher Reynolds number wakes. 

As was mentioned in the previous chapter, Triantafyllou (1990) categorised 

the three-dimensional patterns in the context of "guided waves" (caused by body 

or flow inhomogeneities) and also in three-dimensional patterns due to what he 

termed "a secondary instability". Without wishing to contradict this grouping of 

three-dimensional patterns, it pays, perhaps, to categorise them into different 

groups, according more to their nature and less to their cause: 

a) Mild three-dimensionality. Here we have continuous vortex filaments 

which may, however, not be parallel to the main axis of the body. The vortex 

filament lines may be oblique, "bowed" or wavy, but are continuous from the one 

end of the span to the other. 

b) Strong three-dimensionality. Here the key effects are vortex splitting and 
vortex looping, mainly due to some spanwise variation in vortex strengths or in 

shedding frequency. 

c) Smaller scale three-dimensionality as a result of a shear layer instability 

(e.g. Wei and Smith, 1986). The shear layer instability is of the convective type. 

Although it can also be purely two-dimensional, its small scale frequently results 

in three-dimensional turbulent structures. 

d) Small scale three-dimensionality (turbulence). The distinction of this scale 

of irregularities from the ones mentioned above is basically a matter of 

convention. Whereas the scale of the previous examples is of the order of a 

characteristic model dimension (say, cylinder diameter), the scale of the turbulent 

structures may be considerably smaller. 

It is worth noting that these types of three-dimensionality can occur 

separately or simultaneously, in any combination. The first two may be caused by 

end effects, by spanwise variations in flow conditions or they may be inherent 
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three-dimensional features of the flow. On the other hand, shear layer three- 

dimensionality and turbulence are caused (as a rule) by a secondary instability, in 

many cases accelerated by one of the first two types of three-dimensional patterns. 

Another aim of this work is thus a better understanding of the mechanics of the 

large-scale three-dimensionalities (types a and b) while chapter 8 will briefly move 

into the smaller scales of type (c). Throughout this investigation, the strong 

emphasis will be on such irregularities, and the effects of small-scale turbulence 

will only be considered from a macroscopic point of view, as opposed to a direct 

investigation of its fine structures. 

There have been numerous publications throwing light on the dynamics of 

the two-dimensional near wake. If we combine works like that of Gerrard (1966b) 
with newer theories about the absolute/convective instability concepts we can 

obtain a fairly coherent appreciation (in both the physical and the mathematical 

sense) of the two-dimensional wake. However, although a number of researchers 

have identified key effects such as vortex splitting, our understanding of how some 
important three-dimensional wake parameters interact is still lacking. As such 

"important parameters", we could list (among others) the base pressure, the 

shedding frequency, the formation length, the wake width and the eventual 

strength of the Kärmän vortices (related to the fraction of the original vorticity that 

survives vortex formation). Another important aim of this project is thus a better 

understanding of how these wake parameters interact and vary along the span. 

Although the far wake can be of great importance in a variety of 

engineering applications (for example, in stratified water two dimensionality 

prevails and the vortex street of submarines can survive at a large downstream 

distance, thus making it detectable, generally an undesirable feature for an 

otherwise "quiet" submarine), it is not going to concern us in the present 

investigation. Due to the feedback characteristics of the near wake region (and the 

convective instability nature of the far wake), it is the near wake that interacts with 

the body and hence its dynamics determine the drag, the shedding frequency and 

the fluctuating lift (among other parameters). Hence, this project will concentrate 

on the near wake. 

The majority of the absolute/convective instability investigations have 

concentrated on two-dimensional flows, but the term "absolute instability" has 

been used only in a qualitative manner in three-dimensions (although there can be 

no doubt that such stability characteristics play at least an equally important role in 

the three dimensions as they do in two). Similarly, there have been studies, such 
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as the mathematical models mentioned at the end of the previous chapter (Gaster 

1969 and Noack et al 1991), that have considered three-dimensional flows to be a 

series of inter-linked and coupled quasi-two-dimensional flows. While it is obvious 

that such an approach can never achieve a perfect understanding of complex flow 

patterns, its attractions are also quite apparent. It would therefore be of much 

interest to see whether two-dimensional considerations can be of use in certain 

three-dimensional flows. 

So, we have arrived at a summary of the main objectives of this research 

project: 

a) The dominating feature will be the three-dimensionality of bluff body 

wakes. We will concentrate on the near wake, and on the larger-scale flow 

features (as opposed to small-scale turbulence). 

b) It is aimed to achieve a better insight into key three-dimensional features 

(such as vortex splitting and vortex looping), as well as any other three- 

dimensional characteristics that may arise. 

c) It is hoped to obtain a better understanding of the relations between wake 

parameters such as formation length, wake width, shedding frequency, base 

pressure and the eventual strength of the Kärmän vortices, from a three- 

dimensional point of view (as the average or the instantaneous values of these 

parameters may change along the span). It would be nice to be able to link in some 

way the above to the concepts of absolute and convective instability. 

d) Finally, this study aims to check the validity of quasi-two-dimensional 

considerations in bluff body flows. 

It would be appropriate, after this summary of the project objectives, to 

stress, once again, areas which lie beyond the scope of this project. This project 
does not aim to study: (a) small-scale turbulence (other than a possible 

consideration of its macroscopic effects on the larger scale structures), (b) the far 

wake, and (c) means of "optimising" the flow (e.g. to reduce drag). Even though 

these areas would definitely present us with challenging problems, investigating 

such a diverse field would not allow us to give proper attention to the main target 

of this work, the understanding of the physics of the three-dimensionality of near 

wakes. 
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2.1.2   The approach to be used in this study 

It is accepted that in the phenomena to de discussed in this study 

complexities abound. Obviously, it would be naive and over-ambitious to hope to 

put the issues outlined as project objectives in the previous section beyond further 

dispute. On the contrary, this project (and its expense) will be considered justified, 

even if its contribution is just a small step forward. 

The nature of this study is fundamental. Its engineering applications are 

many steps away. Its purpose is to add to our "bank" of fluid mechanics 

understanding. The main advantage of a fundamental study is that there is no real 

risk: if the conclusions of this study are wrong, no building will collapse on its 

residents and no aeroplane will fall. In such cases conclusions have to be reached 

with certainty and safety. 

Scientific progress thrives on dispute. Complacency and conservatism are 

tools often used to avoid any wrong statements: uncertain -but potentially good- 

arguments are often kept in the closet, purely to avoid the embarrassment of an 

error. This will not be in the nature of this project. 

The concepts presented in later chapters, it is believed, are scientifically 

valid, possible explanations of the observed phenomena. Naturally, where 

possible, much effort has been put to make the suggestions watertight. However, 
as a result of the considerable flow complexity and the inadequate experimental 

apparatus (experimental apparatus, by definition, is never really adequate), in 
some cases plausible explanations could not be further verified. Ideas presented 

herein, may thus be overturned by other researchers, or they may be confirmed. In 

either case, they could, conceivably, be useful. 

2.2     Three-dimensional, geometrically imposed disturbances 

2.2.1   The significance of such disturbances in order to study wake irregularities 

As was mentioned earlier, a measure of the three-dimensionality of the 

flow around a nominally two-dimensional body is the correlation length, the 
spanwise distance at which a certain fluctuating quantity remains correlated. For a 

sufficiently long cylinder at high Reynolds numbers, a typical value of the 

correlation length would be 4-5 diameters. One could explain this surprisingly low 

correlation length value by considering the shapes of vortex filaments. These have 
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to follow either some wavy pattern or there must be some form of vortex 

splitting/looping. 

Experiments in the past have not identified any particular spanwise 

preference for these irregularities. By all indications, they seem to occur at 

random points in time and space. This erratic occurrence of three-dimensional 

effects makes them quite difficult to study in much detail and therefore our 

knowledge of their exact behaviour has been limited. In this investigation it is 

proposed to fix these three-dimensionalities in both time and space, in order to 

make them easier to study. A way to achieve that could be the imposition of some 

mild three-dimensional disturbance on the nominally two-dimensional geometry of 

the body. 

Other researchers have used a similar approach, notably Nuzzi, Magness 

and Rockwell (1992) and Williamson (1992a). In the present work the disturbance 

to be used will be periodic in the spanwise direction. The logic of this periodicity 

(as opposed to a local and isolated disturbance used by other researchers) is two- 

fold. First, it is hoped that any end effects will be "filtered out" at the geometric 

disturbance wavelengths near the end-plates. Vortex splitting has been known, 

some times, to isolate end effects close to the end-plate (e.g. the end cylinders 

used by Eisenlohr and Eckelmann, 1989). In the present case, vortex splitting 

occurring close to the end-plates could limit their effects in that region, thus 

resulting in a purer three-dimensional effect at the wavelengths around the centre 

span. Second, the regular nature of the disturbance will hopefully eradicate most 

of the random type disturbances observed in nominally two-dimensional flows. 

Hence it is hoped that this periodic nature of the disturbance will achieve more 

regular three-dimensionalities, unaffected by the end effects. 

2.2.2   Choice of the model 

Most of the work on bluff body wakes has concentrated on the flow around 

circular cylinders. Despite the apparent geometrical simplicity of this shape, 

circular cylinders result in very complicated and interesting flow patterns, mainly 

due to the non-fixed point of separation and the wake interaction with boundary 

layer characteristics. Although the flow around circular cylinders is of big 

engineering importance (with applications in flows around pipes, cables, 
chimneys, etc.), the extra complications of the moving separation point would 

perhaps hinder our main purpose, the study of three-dimensional patterns. 
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As it was anticipated that the flow patterns that would emerge would be of 

considerable complexity, it was decided to reduce the number of irrelevant (to this 

study) unknowns. The most suitable model section for this would appear to be a 

shape with fixed separation points and minimum body-shear layer interaction. The 

most obvious shape for this is an aerofoil-type shape with a blunt trailing edge, 

similar to that used by Bearman (1965 and 1967a). The main section of the model 

used in the present investigation had a chord of 190mm. The front part was semi- 

elliptic (semi-major axis= 120mm, minor axis=30mm), followed by a straight 

segment (parallel to the free-stream, 70mm long), leading to the blunt trailing 

edge of height, h=30mm. A trip-wire was used in all investigations at 40mm from 

the leading edge, measured along the chord. 

Of the parameters listed above, the most important is the base height, h. It 

was thus decided that the mildest possible form of three-dimensional disturbance 

would be a model with constant height (and hence constant "expected, quasi-two- 

dimensional" shedding frequency and vortex strengths) along the span. A possible 

geometry to achieve this mild, periodic disturbance was a sinusoidal trailing edge 
shape. Figure 2.1 shows the main parameters of the model used for most of the 

experiments, and also the axis convention to be used throughout this study. It 
should be noted here that with this model geometry, each model section has the 

same main geometrical properties, with the only parameter varying along the span 

being the chord, whose variation was taken to be of negligible importance as far as 

the local, quasi-two-dimensional flow parameters are concerned. 

Of, course we would expect the coupling of successive sections to cause 

some three-dimensionality. For example, if the formation length is the same 
everywhere, the vortex lines will follow the model trailing edge, and hence there 

will be some streamwise vorticity. Nevertheless, the shedding frequency could 

conceivably be the same everywhere and hence this imposed three-dimensionality 

initially appears to be milder than that of other studies, where the model geometry 

dictates shedding frequency variations along the span. 

For the initial experiments, various models with the same basic parameters, 

but with different geometric disturbance wavelengths and waveheights were built. 

The geometric disturbance parameters of the models tested are listed in the table 

below: 
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MDDEL   PARAMETERS 
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Figure 2.1       Diagram showing the general layout of the model and also the axis convention 

for this study. 



wavelength, L 
(mm) 

waveheight (peak- 
to-peak), w (mm) 

steepness, w/L 

Straight trailing edge 0.000 

168 4 0.024 

168 8 0.048 

168 15 0.089 

148 15 0.101 

140 15 0.107 

120 15 0.125 

105 15 0.143 

The models used in the more detailed experiments at a later stage are 

highlighted. They are the straight edge model (used for comparison purposes) and 

one of the sinusoidal trailing edge models (L= 148mm, w=15mm). 
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EXPERIMENTAL SET-UP AND TECHNIQUE 

3.1     Introduction 

This chapter describes in detail the procedure used in the experiments of 

this study. Experiments were performed in a wind tunnel for quantitative 

measurements of velocities and pressures, and in a water flume for flow 

visualisation. The final experiments in the wind tunnel involved considerable 

complexity and sophistication. The processes described in this chapter were 

reached through continuous evolution and not instantaneously, and only represent 

the final state of the experimental procedure. The bulk of the results presented 

later stem from this experimental procedure. 

After initial experiments with the models incorporating the various 
different parameters (wavelength and waveheight), a metallic model was 

constructed for the main series of experiments. The main feature of this model was 
its removable trailing edge (figure 3.1). This allowed the shape of the trailing edge 

to be easily changed (from sinusoidal with L= 148mm, w= 15mm, to straight), but 

also made an advantageous positioning of the pressure transducers possible, as will 

be discussed later. 

3.2     Wind tunnel experiments 

3.2.1   The 3' by 3' Wind Tunnel Laboratory 

The quantitative part of this work was performed in the 3' x 3' Wind 

Tunnel of the Department of Aeronautics of Imperial College (figure 3.2a). This 

wind tunnel is of the closed-return type and has a working section of 0.92m by 

0.92m wide and 4.9m long. The working section is preceded by a 2.7m x 2.7m 

settling chamber, followed by a honeycomb and three fine wire mesh screens, 

followed by a 9:1 contraction. The flow velocity in the working section can be 

varied up to a maximum speed of 50m/s approximately, and is uniform to within 

0.5% with a turbulence level of less than 0.04%. 

Although its air flow quality was very good, the wind tunnel initially 
lacked modern equipment which would make automatic experiment control 

possible. Furthermore, its air temperature would rise significantly after long 

running periods. Some of the experiments to be performed would require a large 
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Figure 3.1       Cross section of the main model, featuring a removable trailing edge. The 

enlargement shows a Druck pressure transducer fitted within the model's trailing edge. 



number of different (and hopefully accurately obtained) hot-wire probe positions, 

and continuous running times of 10-12 hours. Without a fully automated 

experiment, problems would arise in many areas: (a) with the increase of air 

temperature, the tunnel speed would tend to drop, in that way requiring frequent 

adjustment, (b) for long experiments, hot-wire probe calibrations would tend to 

drift, thus increasing experimental error, (c) hot-wire probe positions would have 

to be adjusted manually, thus reducing accuracy and increasing the chance of 

error, and (d) experiments would take a much larger amount of time (as an 

example, experiments that would have taken about two weeks to perform, only 

required one day after the automation was completed). Unfavourable aspects of an 

automated experiment include larger cost and long planning time, especially in this 

case when all the systems (to be described below) had to be developed more or 

less from scratch. Figure 3.3 is a schematic diagram showing the various 

components of the automated, experiment control layout (to be also described in 

detail in this chapter). 

Control of all tunnel parameters by a 386 PC-compatible computer was 

achieved through a CIL interface system. A CIL A-Module multiplexer and 16-bit 

(high accuracy) A-D converter was used to monitor (among other quantities) 

temperature, free-stream velocity and atmospheric pressure. Temperature readings 

were obtained via a temperature-sensitive transistor. Tunnel speed was monitored 

from the output of an ultra-sensitive Honeywell mean pressure transducer, which 

measured the pressure difference between the beginning and the end of the 9:1 

tunnel contraction. A Honeywell absolute pressure transducer was used to measure 

atmospheric pressure. A CIL O-Module D-A converter was used to control tunnel 

speed in accordance with the readings obtained by the A-D converter. 

Considerable effort was put into developing a three-dimensional traverse 

(used to move a hot-wire probe). The traverse used eventually was a completely 

redesigned development of an old one that existed for that wind tunnel. The old 

traverse was inadequate in terms of position repeatability and its vertical arm was 
not stiff enough (and would hence vibrate). Furthermore, it could not be 

controlled digitally from the computer. The frame for the two horizontal axes of 

motion was kept unchanged, but had to be adapted for use with modern stepper 

motors. A new box holding the vertical arm was designed and built. All three 
stepper motors (and their controlling box) were supplied by Micromech Ltd. The 
controlling box for the motors was driven by three CIL S-Modules. The control of 
the traverse from the computer was open-loop, and therefore it was of paramount 

importance to ensure that position repeatability could be achieved, even after 500 
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Figure 3.2 Laboratories used in the Department of Aeronautics, Imperial College of 

Science, Technology and Medicine: (a) the 3'x3' Wind Tunnel, and (b) schematic representation 

of the water flume. 



movements that would occur in some of the experiments. In spite of many other 

precautions, the traverse was also programmed to move to a reference position 

(controlled by an accurate photo-diode) after a large number of movements, in 

order to check on its position accuracy and re-calibrate itself. 

3.2.2  Hot-wire measurements 

Hot-wire anemometry was the most important experimental tool of this 

investigation. The anemometers used were made by T.S.I., while the actual probes 

were made by Dantec, and were of the gold-plated type. Up to five channels were 

used at one time. All hot-wire probes were set to operate at a temperature of 250° 

C. Depending on their type (single or cross wire), and on their use (moving with 

the traverse or stationary) different calibration procedures were used. In all cases, 

calibration data would be fitted by a least squares algorithm to King's empirical 

cooling law: 

E2R, 

(K+*t) 
\a + b(pVf](ts-te) 

where E is the bridge voltage, Rs is the sensor operating resistance, RL is the 

resistance in series with the sensor, % is the sensor operating temperature, tg is the 

environment temperature, p is the fluid density, V is the cooling velocity and a, b, 

n are constants (n«2). Rearranging King's equation, we get: 

v = ± ^L-B 

Thus the constants A,B and n would be used to convert voltages to velocities. 

Expected errors by using this empirical formula were of the order of 1 %. 

Frequently, single wires would be positioned at stationary positions in 

order to record phase or amplitude information, predominantly for comparison 

purposes (for example in conditional sampling). In these circumstances, the hot- 

wire probe would be calibrated against the free stream velocity (in an empty 
tunnel), to obtain the best values for A,B and n. Once the experiment was started, 

one could detect any drift in the values of the calibration constants by monitoring 
long period trends in the statistical properties of the signal (mean value, root mean 

square, and skewness). The values of the calibration constants could thus be 
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Figure 3.3       Block diagram showing the interconnection of the main, experiment-controlling 

devices. The whole experiment was automated. 



corrected to compensate these trends. This process was necessary because of the 

long experiment duration and the need for great accuracy in comparing signals for 

the conditional sampling experiments to be described in a later chapter. 

Single hot-wire probes were also used extensively in conjunction with the 

traverse. In this case the advantage was that they could be calibrated during the 
experiment. At regular intervals, the traverse would move the wire to a position 

close to a pitot-static tube (about 10h above the model) and the wire would be 

calibrated against a varying tunnel speed. The acquisition of wake flow data would 

then resume. 

Cross wires (always moved by the traverse) followed more or less a similar 

procedure, a notable difference being that it was important to be able to evaluate 

the exact angles of the two probes towards the free stream. This was accomplished 

in the following way (a similar method having been used, among others, by Ho 

1991). First, in the empty tunnel, the wire would be calibrated at different angles 

towards the free stream. Once the wire was positioned on the traverse for the 

experiment, the angles of the two probes towards the free stream could be obtained 

by re-calibrating them and matching the calibration curves to the ones obtained 

previously. All the cross wires used were conventional in that the two probes were 

nominally 90° apart (each one at 45° to the free stream). Considering that the 

aspect ratio of the sensors was large, the cooling velocity was taken as the velocity 

component normal to the sensor, any cooling effect of an axial velocity taken to be 

negligible. 

3.2.3   Pressure measurements 

Many of the experiments also involved measurement of the base pressure. 

All base pressure measurements were performed along the centre line of the 

model. Mean pressures were obtained in a fairly conventional way, using an ultra- 

sensitive Honeywell pressure transducer (positioned outside the tunnel) and simple 

pressure tappings. 

As was briefly mentioned above, the model used eventually for the detailed 

experiments was designed in a way which permitted accurate fluctuating pressure 

measurement. The frequencies of interest could be of the order of 1000Hz, and 

therefore the dynamic response of the transducers was of importance. According to 

empirical formulae, and also to dynamic calibrations of the transducers by 

previous investigators in the Aeronautics Department of Imperial College, it was 
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apparent that the tube length to be used would have to be less than 25mm long. It 

was therefore decided to position the transducers as close as possible to the trailing 

edge (figure 3.1, bottom). As the transducer membranes were only 2mm from the 
flow, this arrangement was dynamically superior to a longer tube. The pressure 

transducers used were made by Druck, and in all cases were calibrated against the 

Honeywell transducer. 

3.2.4 Data acquisition system 

Fluctuating velocity and pressure signals would first pass through an 

amplifier and a low-pass filter. They were then recorded by a 12-bit Microlink A- 

D converter. Seven channels were available, permitting a simultaneous sampling 

of seven independent signals. Each channel had its own 16K-Sample memory, an 

adjustable voltage range and could sample at rates up to lOOKHz. Data was 
transferred to the computer via an IEEE GPIB bus and stored on the hard disk for 

subsequent analysis. 

3.2.5 General calibration procedures used 

Although some indication was given above on how the hot-wire probes and 

the pressure transducers were calibrated, it is important to elaborate a bit more on 
some of the general calibration procedures used. The experiments performed 

involved a large number of voltage meters (e.g. the A-D converter), amplifiers, 

pressure transducers, velocity sensors etc., each contributing with its own, small 

or large, error. In order to keep the final error to a minimum, it was important to 
establish stable reference instruments. The instrument used as a pressure reference 

was a Betz manometer, while the voltage reference was chosen to be the ultra- 

accurate CIL 16-bit A-D converter. 

The Honeywell pressure transducers were calibrated regularly against the 

Betz manometer and proved to be extremely stable. Subsequently, all Druck 

pressure transducers were calibrated against them. The velocity reference was a 
pitot-static tube connected to a Honeywell transducer. The tunnel (whose speed 

was evaluated by the pressure drop in the contraction) was calibrated against this 

pitot-static tube. 

In all cases, the calibration would be automatically controlled by the 
computer, via the CIL 16-bit A-D converter. All calibration data would be stored 

in special-format files, in easy access by the experiment control or the experiment 
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analysis programmes. To cancel out any inaccuracies in the amplifiers or the 

filters, calibrations of pressure transducers or hot-wire probes were always 

performed through the amplifier-filter set that would be used with them in the 

subsequent experiments. Finally, all seven Microlink 12-bit channels were also 

calibrated (in all their voltage ranges) against the 16-bit CIL A-D converter. 

Generally speaking, actual experiments tend to be more interesting than the 

calibration procedures of the apparatus. The procedures described above could 

have been performed manually. Considerable time was spent to completely 

standardise and automate the whole process and the total size of all the calibration 

program codes (written in QuickBasic) was about 60Kbytes. Once this had been 

accomplished, however, the logistical problems involved in keeping track of all 

the equipment was eliminated. Furthermore, the speed at which calibration could 

be obtained made it possible to perform this task more frequently. 

3.2.6  Experimental procedure 

In accordance with the calibration procedures described previously, all 

experiments were completely automated. The process to a completely trouble-free 

experiment was some times quite painful and evolved as time passed, but the final 

state of the programs permitted quick setting-up of each experiment, large 

flexibility and a compact and organised eventual storage of the data. Once all 

calibrations had been completed, an experiment consisted primarily of three 
phases. Source codes for these phases were of a total size of about 120Kbytes. 

The first phase was the set-up of the experiment. Here the computer would 

obtain information about the nature of each signal to be sampled (pressure or 

velocity), the devices to be used (in order to access the correct calibration files), 

the path to be followed by the traverse, and the sampling parameters (number of 

cycles, sampling frequency, etc.). Special files would then be created to be used 

by the program controlling the experiment and by the data reduction program. 

The second phase was the actual experiment. At each sampling cycle the 

following sequence would be followed: 

a).      Measurement   of   free-stream   velocity,    atmospheric   pressure    and 

temperature. 

b).      In the event that the speed had dropped below the acceptable limits, 
adjustment of the tunnel speed. Depending on the requirements of the experiment, 
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either the speed (in conditional sampling experiments) or the Reynolds number (in 

all other cases) could be kept constant. 

c).       Movement of the traverse to the next hot-wire position. 

d).      Sampling of data. 

e).      Storage of raw data on the hard disk. 

As was mentioned before, the hot-wire probe would regularly move close 

to a pitot-static tube far from the model, in order to be calibrated. Much effort was 

put into reducing the time of each sampling cycle, as some experiments could last 

up to 12 hours. Both the first phase and the second phase programmes were 

written in QuickBasic. 

In the third phase, the data was reduced to velocities and pressures and 

stored in a very compact, special binary format. Another file would contain all 
other information about experimental conditions, hot-wire positions and how to 

access the data of each sampling cycle. This phase looks quite simple but in reality 

was not quite so. In order to reduce all the data (some times up to 200Mbytes) 

much CPU time was needed. A Microway accelerator card running FORTRAN 

(about 10 times quicker than the 386-compatible PC) was used, but it still required 

up to 8 hours of data reduction for a long experiment. Also, considering the large 

amounts of data, it was of paramount importance to store it in a compact and 

easily accessible format. A FORTRAN subroutine was used in all analysis 

programmes, to access the data easily and reliably. 

It should be noted, that after the third phase, data had still not started to be 

analysed. Analysing algorithms will be described at later stages, but were all 

written in accelerator card FORTRAN. A lot of the algorithms used were based on 

subroutines described in Press et al (1986, Numerical recipes). 

3.2.7   Blockage correction 

Although the tunnel blockage was less than 4%, a blockage correction was 

applied to all the data, following the principles described by Maskell (1963). That 

paper essentially recommends a first order, time-steady correction which removes 

the bulk of the blockage error. For a non-lifting body, it assumes a net increase of 

the free-stream velocity, obtained through various momentum considerations. 
Arguments were put forward in Bearman (1963) to take CD«Cpb, and the same 
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assumption was used here. As an indication, the maximum blockage correction 

was less than 2%. 

3.3     Water flume experiments 

3.3.1   The Water Flume Laboratory 

Flow visualisation was carried out in a water flume in the hydraulics 

laboratory of the Department of Aeronautics of Imperial College (the flume is 

shown diagrammatically in figure 3.2b). The working section is 0.61m wide, 

0.69m deep and 1.8m long. It is preceded by a settling chamber, followed by a 

honeycomb and wire screens, followed by a 4:1 contraction. The flow obtained in 

the working section can be varied up to a maximum speed of 0.30m/s 

approximately (a higher speed can be achieved by lowering the weir downstream 

of the working section, thus reducing its depth). 

The main advantage of the water flume for flow visualisation was that, due 

to the lower speeds, the flow was easily observable. The Reynolds number, 

however, could only reach a value of 2500, about 16 times lower than that of the 

wind tunnel. Although quantitative data from the wind tunnel and from the water 

flume could not be compared, sufficient evidence emerged proving that the main 

characteristics of the two flows were the same. When comparing wind tunnel and 

water flume results, the reader should always keep in mind this Reynolds number 

discrepancy. 

3.3.2   The flow visualisation technique 

In a similar fashion to the wind tunnel techniques described previously, the 

flow visualisation technique to be discussed here was reached after many evolution 

stages. The pictures presented later were all obtained using these techniques. 

The main element of the visualisation technique is a precipitate produced 

on the surface of the model. The advantage of producing the precipitate on the 

surface, as opposed to injecting it in the flow, is that in that way it gives a better 

indication of vorticity (also generated on the surface). Even though vorticity 

cancellation and diffusion can not be accurately indicated by the precipitate, this 

technique could highlight important aspects of the vortex dynamics of the wake. 

To produce the precipitate, a thin strip of pure tin was stuck on the model (usually 

on the semi-elliptic part, but some times also on the base). The strip was 0.107mm 
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thick, 30-40mm wide and would spread over the entire span of the model (the 

material was supplied by Goodfellow Metals; it is possible that other metals, e.g. 

lead, could produce a similar effect). An electrode was placed in the water, 
downstream of the model. When a voltage (about 30-40V, positive pole connected 

to the tin strip) was applied between the strip and the electrode, a thick white 

cloud (probably a tin oxide) would be produced from the tin strip, and convected 

downstream by the flow. The electrolytic precipitation method was described in 

detail by Honji et al (1980). 

The flow was illuminated by a 5W laser sheet. By the use of mirrors, 

different sections of the flow could be highlighted and observed. The use of such a 

powerful light source was made necessary by the poor condition of the water. The 
pipes of the flume were predominantly made out of steel, and the water would 

quickly loose its clarity because of rust contamination. 

A standard video camera was used in order to record the flow. 

Conventional photography could produce clearer images, but the video more than 
compensated its picture quality handicap by enabling the accurate selection of the 

most indicative frames. In order to achieve similar results by photography, tens of 

film rolls might have had to be wasted. The video was processed in the Olivetti 

Research Laboratory at Cambridge. Sequences of frames could be read by a 
workstation computer. After optimally adjusting contrast and brightness, a post- 

script file was produced and printed on a laser printer. The pictures presented later 

essentially are negatives of the video (hence vortex filaments appear to be dark). 

The combination of unclear water, video resolution and a high Reynolds 

number, makes the final image much less clear than similar images presented in 

the works of Williamson or Rockwell. Nevertheless, flow visualisation presented 

us with numerous interesting phenomena. 
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4.        RESULTS 

4.1     Initial results 

4.1.1   Mean Base Pressure 

As an initial comparison between the various models, the mean base 

pressure was measured. To increase the effective span, all models were fitted with 

end-plates, as in Bearman (1965). For the straight edge model the result was a 

constant value of Cp^ in a spanwise region of 10h around the mid-span. The value 

of -0.585 obtained was in good agreement with previous results. 

Tanner (1972) studied methods of reducing the drag of aerofoils with a 

blunt trailing edge (their section thus similar to the one in this work). He found 

that by "breaking" the separation line he could achieve significant drag reduction. 

In accordance with these results, it should thus come as no surprise that the wavy 

models had higher (less negative) values of Cp^. The distribution of base pressure 

along a half wavelength of the various wavy models (all of them with w=15mm) 

is shown in figure 4.1. All models showed base pressure values that repeated 

themselves over many geometric wavelengths. 

A notable feature in figure 4.1 is that in general, the steeper the wave 

(where steepness=w/L) the larger the drag reduction. Compared to the straight 

edge model, the drag reduction for the models with L= 168,148,140,120 and 

105mm was about 10%,16%,24%,25% and 34% respectively. It is unclear why 

the difference between the L= 140 and the L= 120 models is so small. 

One more notable feature of figure 4.1 is the significant difference between 

the measured values of drag at a peak and a valley. All wavy models show a 

similar trend, with the peak exhibiting less negative values of Cpb than the valley. 

For the L= 148mm model, the value at the valley is about -0.48, smoothly 

increasing to a maximum of -0.44 at the peak. It should be noted that from 

y/L=0.2 to y/L=0.5 (valley) the base pressure remains quite constant, the main 

variations being observed for y/L<0.2, i.e. close to the peak. 

4.1.2   Velocity power spectra 

Velocity power spectra were obtained from single hot wire signals, in order 

to  determine the characteristic frequencies  of the wake.  The probes  were 
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positioned at approximately 0.7h downstream of the local trailing edge position 

and a distance 0.8h above the wake centre line (i.e. outside the shear layer). For 

the straight edge model the Strouhal number obtained (from the peak of the power 

spectrum) was 0.24, in agreement with values obtained by Bearman (1963). 

Figure 4.2 shows spectra for the L= 148mm, w= 15mm model for different 

distances y from the peak of the wave. The main characteristic is the presence of 

two shedding frequencies (at S=0.24 and at S=0.29). Whereas at the peak the 

low frequency is stronger than the high one (note that in figure 4.2 the y-axis is a 

logarithmic scale), as we move towards the valley the low frequency dies off 
(becoming almost totally undetectable at y/L=0.333) and the high frequency 

component becomes stronger and stronger. 

There are a few points one can make about these results at this prelminary 

stage. The presence of the two frequencies strongly suggests that at least at some 

times we have two cells (within this half-wavelength) shedding at different 

frequencies. At the peak there is the low frequency shedding and at the valley the 

high frequency. Further to that point, the high frequency cell seems to be stronger 

and some times spreads over the whole half-wavelength. The presence of these 

two cells indicates that there must be some vortex splitting occurring at the cell 

boundary. Most of the activity takes place at the peak, where we have maxima at 

both frequencies in the spectrum. In comparison, the valley spectra seem to be 

more like those for a straight-edged model. Interestingly, the double frequency 
characteristic appears in the region of the peak where, as was shown in the 

previous section, the base pressure showed the largest variation. Where we have 

both frequencies, a low frequency also appears at the difference of the two 

characteristic frequencies (like a beat frequency). 

All wavy models again followed the same general pattern. It would be 

superfluous to include all the spectra. Figure 4.3 shows the spectra at the peaks of 

the various wavy models (and also the spectrum for the straight edge model). In a 

similar fashion that the drag reduction increased as the wave steepness, w/L 

increased (previous section), the level of disturbance also seems to increase with 

increasing steepness (which is not entirely surprising), with the two shedding 
frequencies becoming more and more distinct. Another point of interest is the 

apparent "memory" by which the flows retain the straight edge shedding 

frequency: all models seem to have a low shedding frequency of that order 

(S=0.24), while the high frequency varies. 
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VELOCITY POWER SPECTRA AT THE PEAKS OF VARIOUS MODELS 
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Figure 4.3       Velocity power spectra obtained at the peaks of models with different 

parameters. 



4.1.3 Reynolds number dependence 

The particular results presented above were all for Re=40000 (based on 

model height, h). Similar measurements were also performed for Re=20000 and 

for Re=60000. There was no detectable difference between the various Reynolds 

numbers. This is not surprising because all the models had trip-wires, with the 

point of boundary layer transition to turbulence thus being fixed. In any case, 

models with sharp edges and fixed separation points are known to be much less 

Reynolds number dependent than models where the point of separation can move 

(as, for example, happens with a circular cylinder). 

Brief measurements were also performed at a Reynolds number of about 

4000. The wind tunnel has not been designed to ran at such low speeds and all the 

measuring instruments were not sensitive enough for accurate readings, but the 

purpose was to see whether the dual frequency characteristic still existed. 

Although the readings contained a large amount of noise, one could still see the 

dual shedding frequency. The reason this was of interest was that it confirmed that 
at the low, water flume Reynolds numbers the main flow characteristics would be 

the same. 

4.1.4 Choice of parameters for detailed experiments 

The results described above were all obtained at a very early point of this 

study. The main features are that: 

a).      All models show similar trends, the steeper the geometric disturbance 

wave, the larger the effects on base pressure and shedding frequency. 

b).      At least above Re=20000, the Reynolds number dependence appears to be 

negligible. 

As the purpose of this work was to study aspects of three-dimensionality, it 

was decided to concentrate on one model and one Reynolds number. As was 

mentioned earlier, the model chosen was the one with L= 148mm and w=15mm. 

It was chosen because it clearly displayed the various three-dimensional 

characteristics while, at the same time, its geometric disturbance was not too 

large. The chosen value for Reynolds number was 40000. Hence, all the wavy 

model results to be presented later will be for these parameters. Further detailed 

experiments will also be presented for the straight edge model (at the same 

Reynolds number). 
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4.2     Detailed results : sinusoidal trailing edge model 

A few of the results to be discussed in this section were briefly mentioned 

earlier in this chapter. This section will present more detailed quantitative results 

for the chosen sinusoidal model, and also some flow visualisation pictures. 

4.2.1   Discussion of velocity and pressure power spectra 

The existence of a dual frequency characteristic was established in the 

previous section. For this model configuration, the two frequencies had the non- 

dimensionalised values of fj=0.24 and f2=0.29. What remains, of course, is to 

establish what these two frequencies represent from a physical point of view. A 

single hot-wire probe records velocities in the plane normal to the probe axis. 

Although it is easy to understand that at the hot-wire probe position there will be 
velocity fluctuations at the two observed frequencies (either simultaneously or at 

different time instants), two unclear points arise. 

First, we cannot be sure whether each one of the two main peaks at a 

velocity spectrum necessarily reflects the frequency of vortex shedding (at some 

time instants, at least) at that spanwise position. For example, even though at a 

spanwise position A, say, we may observe noticeable peaks at both frequencies, fi 

and f2, it may be that at that position A the vortex shedding is always at a 

frequency f\, with the second peak at f2 merely reflecting induced velocities from 

a spanwise position a bit further away from A, and not fluctuations of vorticity 

flux, which, strictly speaking, should be the real indication of the Strouhal 

number. 

Second, does the dual frequency reflect a simultaneous presence of two 

frequencies, e.g. a signal like Ci*sin(27tfi)+C2*sin(2rcf2), or does it represent a 

long interval of Ci*sin(27tfi), followed by a long interval at C2*sin(27if2)? 

It should be noted that both of these uncertainties are a result of one 

problem: we cannot be certain of the relation of the peak of a velocity spectrum to 

the shedding frequency when there is more than one frequency of interest. This 

uncertainty would not exist if we had only one clear peak in the spectrum. As a 
result of the fact that the signals are not pure signals, the peaks of the spectra are 

not delta function-like but have a noticeable bandwidth. Even though the two 

peaks are distinct, their bandwidths overlap. Hence it was not possible to measure 
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the period of shedding from the velocity signal and determine accurately the 

Strouhal number to which each shedding cycle belonged. 

At each spanwise position, as far as the two peaks are concerned, spectra 

obtained from different hot wire positions in the near wake show similar patterns 

to figure 4.2 discussed earlier. Figure 4.4, for example was obtained closer to the 

centre-wake, and despite the increased noise level (the hot wire in figure 4.2 was 

outside the wake whereas in figure 4.4 it is not, and hence comes under the 
influence of wake turbulence), one can still see the dual frequency characteristic. 

The same applies for the spectra of figures 4.5-4.8: it is clear that the presence of 

the two frequencies, and their relative energies are mainly a function of the 

spanwise position, not the exact hot wire position in a y=constant plane (where y 

is the spanwise position). 

Fluctuating base pressure power spectra were also obtained. The Druck 

pressure transducers used had a very low signal-to-noise ratio, and the spectra 

presented in figure 4.9 are averages of the spectra of 128 sets of data (each 4096 
samples long). In general, base pressure fluctuations at the centre-wake tend to 

have a characteristic frequency of double the shedding frequency, as the centre- 
wake comes under the influence of vortices from both sides of the wake. In figure 

4.9 we can see three main shedding-related frequencies: 2fi, 2f2 and (fl+f2>- It 
should be noted that some times white noise seems to conceal those peaks. We 

have to relate the (fi+f"2) component to the (f2-fl) component observed both in 

the velocity spectra and also in the pressure spectra. 

The (f*2-fl) component was observed in both the velocity spectra and the 

pressure spectra (where it actually is about 10 times more energetic than the high 

frequency fluctuations-a number that may have been amplified by the white noise 
characteristics of the pressure transducer). From a mathematical point of view, it 

has to be related to the simultaneous existence of both the fi and the f*2 
components. Although it is reminiscent of a linear beat frequency, it should be 

noted that this does not seem to be the case in the present study. A linear beat 

frequency is the low frequency fluctuation of the envelope of the linear sum of two 

sine waves. If one were to take the Fourier transform of this linear sum, the (f2- 

f*l) component would not appear. The presence of the two components, as can be 

seen in some of the spectra of figures 4.6 and 4.8, is not sufficient to cause the 

(f2_fl) component. It therefore seems that the (f^l) "beat" frequency is the result 

of a non-linear interaction of the two shedding frequencies of neighbouring cells. 
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Figure 4.9      Base pressure power spectra along the span of the sinusoidal model. 



The magnitude of this frequency in the pressure spectra, reflects significant 

low-frequency fluctuations in base pressure. Furthermore, we could note at this 

point that if we have two neighbouring cells shedding at frequencies f\ and f2, the 

frequency of vortex splitting (a non-linear phenomenon) will be fä-fi). Hence, 

this low frequency must have important consequences on the physics of the wake. 

These will be discussed in more detail in a later chapter. 

4.2.2  Flow visualisation: the different vortex shedding modes 

Flow visualisation performed in the water flume confirmed the cellular 

nature of the wake of the sinusoidal model. The pictures to be presented in this 

section give a clear indication that vortex splitting occurs. 

Figure 4.10 is a sequence which shows the low-frequency periodicity of 

vortex splitting. The photographs were extracted from a video sequence, with each 

shot being roughly one shedding cycle after its preceding shot. From (a) there is 

little to indicate the complicated three-dimensional nature of the flow. One 

shedding cycle later, at photo (b), the cell at the peak seems to have delayed its 

vortex shedding by a small amount. The vortices from the two neighbouring 

valleys have bowed backwards to accommodate this delay. At photo (c), one more 

cycle later, a further delay at the peak seems to have brought the two cells out of 

phase. The vortices from the valleys have bent further back. It appears that when 

this bowing angle becomes too large vortex splitting occurs: the vortex from the 

peak has linked-up with two vortices from each valley (Eisenlohr and Eckelmann, 

1989, also identify the large oblique bowing angle as one of the reasons for vortex 

splitting). Photo (d) follows a similar pattern with vortex splitting once again 

being very pronounced, while from (e) to (h) the phase difference between the two 

cells starts to go down again, the vortex filaments then becoming straighter. 

It is interesting to note the vortices further downstream of formation, which 

appear towards the right of each photograph. In each case these vortices show the 

downstream evolution of the vortex formed in the previous photograph. Where the 

previous photograph showed a fairly coherent, straight vortex, this vortex can still 
be clearly seen further downstream. On the other hand, in the cases when vortex 

splitting occurred, their evolution downstream seems to be much more disordered, 
as can be seen in photos (d), (e) and (f), which succeed photos (c), (d) and (e) 

respectively. 
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From this we can conclude that the complicated three-dimensional 

phenomena occurring in the near wake do not quickly relax to a two-dimensional 

state, but retain their three-dimensionality further downstream. In these highly 

turbulent phenomena, the tin oxide precipitate diffuses too quickly for us to be 

able to see the three-dimensional structure in the positions downstream of the near 
wake. Nevertheless, these observations seem to fit in well with Breidethal's 

suggestion (1980) that the asymptotic state of the two opposite strength shear 

layers (i.e. a wake) is three-dimensional. 

Another interesting feature of figure 4.10 is the "stubbornness" by which 

each cell stays at its selected frequency. Even in photos (a) and (b), where the 

vortices appear to be fairly straight and undisturbed, the cell at the peak seems to 
"know" that it is shedding vortices at a slower rate. Each cell behaves thus like an 

oscillator, operating at its own characteristic frequency. Even though the flow may 

at times superficially seem (as in photos (a) and (b)) two-dimensional, the 

underlying physical mechanisms are in fact always three-dimensional. 

In the sequence of figure 4.10, the flow is symmetric with respect to the 

peak. This symmetric mode is the mode where the characteristics described are at 

their clearest. Flow visualisation revealed a total of four modes, here termed 

symmetric, antisymmetric (two types) and oblique. 

The oblique mode appears in photos (a)-(d) of figure 4.11. From these 

pictures one can see that these is no preferred oblique direction, i.e. the oblique 

mode is not due to an imperfection in the alignment of the model. During the 

oblique mode we could reasonably expect a uniform shedding frequency across the 

peak, which may explain the presence of the high shedding frequency (f2) at the 

spectrum of the peak (as was seen for the wind tunnel results). 

In the antisymmetric mode, shown in photos (e)-(h), the phenomena in the 

peak's two neighbouring valleys are in anti-phase. It is unclear exactly what 

happens in the region of the peak. One possibility involves two cells (each based 

of one valley and shedding at f2) that extend up to the peak and link-up in that 

region. Another possibility involves three cells: f2 at one valley, followed by f\ at 

the peak, followed by f2 at the other valley. The dislocations would then follow a 
pattern similar to that for the symmetric mode described earlier. We shall see that 
as a necessary mechanism of transition between the symmetric and the oblique 

modes, both kinds (two-cell and three-cell) of antisymmetric mode must exist. 
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Figure 4.11     Flow visualisation for the sinusoidal model. Photos (a) to (d): oblique shedding 

mode. Photos (e) to (h): antisymmetric shedding mode. 



SCHEMATIC DIAGRAM  OF DIFFERENT SHEDDING MODES 
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Figure 4.12 Schematic representation of the various shedding modes. Shaded areas represent 

dislocations. It is proposed that transition can only occur between adjacent boxes and also that 

in the wind tunnel (high Reynolds numbers) the two lower modes are either very weak or non- 

existent. 



The flow alternates in seemingly irregular intervals from the one mode to 

the other. The transition between the modes does not, as a rule, occur 

instantaneously, but is gradual. Thus, in order to understand the flow we have to 

identify possible intermediate states that may aid the transition from one mode to 

the other. For example, too many parameters would have to change for a 

symmetric to oblique transition to happen. Figure 4.12 gives a possible 

explanation about the transition between modes. The various modes are ordered in 
such a way that each one is adjacent to the other modes which most closely 

resemble it. Thus, it is suggested here that the mode can only "jump" between two 

consecutive boxes of figure 4.12, either upwards or downwards. 

A transition between the symmetric and the three-cell antisymmetric mode 

would involve the shedding in the two fJ2 cells on either side of the f\ cell 

gradually getting in or out of phase. It is debatable whether there is a preferred 

phase difference. These two modes are similar to the two-sided dislocations 

observed by Williamson (1992a). In that paper he suggests that the induced 
velocities from the one f2 cell to the other serve as a means of synchronisation 

between these two cells. One could perhaps apply a similar consideration in the 

present case, but there is insufficient evidence. What is more likely is that the 

phase difference is fairly random, with the distinction of symmetric or 

antisymmetric being just a criterion to differentiate between broad features of the 

flow. 

The transition between the two-cell and the three-cell antisymmetric modes 

basically depends on the size of the central (fi) cell. If it fluctuates in spanwise 
size, it is possible that at certain times it will vanish completely (two-cell mode) 

while at other times it will reappear (three-cell mode). Once again, it should be 
stressed that this distinction between the two kinds of antisymmetric mode seems 

to be the best explanation in order to understand how the oblique mode comes 

about; concrete evidence is limited. 

Finally, insight into the transition between the two-cell antisymmetric mode 
and the oblique mode is provided by photo (d) of figure 4.11. It is unclear which 

mode this shot really belongs to. One could imagine either of the two modes 
evolving from it. If we have a dislocation separating two cells of the same 

frequency but different phase, it is conceivable that in the vicinity of the 
dislocation the vortices straighten out, thus causing oblique vortex filaments. 
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It was mentioned earlier that the flow would switch between modes at 

seemingly random intervals. Although some logical mode-transition procedures 

were proposed above, the mechanisms of transition are unclear. Obviously, a 

number of questions regarding mode-transition arise. 

We do not know if the four proposed modes are genuinely "self-contained" 

modes. They could each conceal a very low level instability that gradually forces a 

change of mode. If that is the case, in reality we then have only one mode, which 

is quite chaotic and has a very large time constant. An inherent feature of this one 

mode would then be the inevitable transitions between the various observed 

"modes". On the other hand, each of the observed modes could be a stable mode, 

in the sense that, in the absence of external de-stabilising factors, it could continue 

ad infinitwn. In that case the transitions could be triggered by some irregularities 

in the flow. It should be noted that there is a very thin line separating these two 

concepts. At the moment one thing is clear: all modes would occur, irrespective of 

initial conditions and after sufficient time had been allowed for the flow to settle. 

Another question concerns the Reynolds number. If the instability causing 

mode-transition is so small, it would seem possible that its nature could be 

Reynolds number dependent. We should therefore treat the existence of the four 

modes with caution, and not automatically assume their presence at the high 

Reynolds numbers of the wind tunnel. 

In concluding this first flow visualisation discussion, we may say that the 

flow visualisation pictures fit in quite well with the explanations given when 

discussing the quantitative, wind tunnel spectral results. 

4.2.3   The relation of the shedding frequency to the mode 

The previous section included some speculation as to how the shedding 

frequency is related to the mode. An attempt was made in the wind tunnel to 

determine the mode of vortex shedding. Single hot wires were placed just outside 

the wakes of two consecutive valleys. The phase difference between the two 

signals would determine whether we had a symmetric or an antisymmetric/oblique 

mode. To be able to distinguish between the two kinds of antisymmetric modes 

and also to determine whether we had an oblique mode would have been very 

interesting, but it would require many more hot wires in the wake. 
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The following criterion was used, regarding the phase difference 9 between 

the two hot wires: 

(-TC/12) < 0 < (7t/12) : symmetric mode 

(Tt-Tt/12) < 9 < (71+71/12)       -.antisymmetric/oblique modes (collectively 

referred to as "antisymmetric mode") 

The flow would spend about 40% of the time in each mode and 20% in an 

intermediate condition. To obtain the power spectrum of a signal g(t) (velocity or 

pressure) at the symmetric mode, a window function w(t) was defined as follows: 

symmetric mode not present : w(t)=0 

symmetric mode present       : w(t)=k (a normalising constant) 

The transition from 0 to k and from k to 0 would be a smooth cosine 

function (the continuity in value and first derivative ensuring minimum spurious 
spectral interference). Intervals where w(t)=k lasted too little were removed 

(setting w(t)=0). The value of k was determined by solving the equation 

r.m.s.(w(t))=l. Hence the power spectrum of g(t) at the symmetric mode was 

taken as the power spectrum of g(t)*w(t). Due to the fluctuations (at a low 

frequency) of w(t), the low frequency components of the resulting power spectrum 

were distorted. The higher frequencies, however, retained their main 

characteristics. An equivalent procedure was used to obtain spectra for the 

antisymmetric mode. 

Not surprisingly, the most interesting effects were observed in the region 

of the peak. Figure 4.13 shows spectra obtained at y/L=0 (i.e. at the peak). The 
most significant feature is that for the symmetric mode the high frequency 

component (ft) has disappeared. This appears to be conclusive evidence that the 

dual frequency characteristic of the spectra can, in fact, represent a 

(comparatively) long interval of Ci*sin(27tfi), followed by a long interval at 

C2*sin(27tf2) (i.e. a flow switching between two frequencies), as opposed to a 

signal like Ci*sin(27ifi)+C2*sin(27if2). For the particular mode in question (the 
symmetric mode) it effectively excludes the possibility of parallel shedding. If the 

shedding in two valleys is in phase, there must then definitely be a lower 

frequency cell in between. 
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SINUSOIDAL T.E. VELOCITY POWER SPECTRA 

x/h=0.733   y/L=0.000   z/h=0.800 

0.0 0.1 0.2 0.3 0.4        0.5        0.6 

Reduced Frequency 

0.7 1.0 

Figure 4.13 Velocity spectra obtained at the peak. Top is for the whole signal, while the 

lower two figures have been obtained by splitting the signal into its symmetric and 

antisymmetric mode parts. The symmetric mode spectrum shows no notable high shedding 

frequency (f/>) component. 



SINUSOIDAL T.E. BASE PRESSURE POWER SPECTRA 
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Figure 4.14 Pressure spectra obtained at the peak. Top is for the whole signal, while the 

lower two figures have been obtained by splitting the signal into its symmetric and 

antisymmetric mode parts, (fj+f^) component (present in the other spectra) is absent for the 

middle diagram, i.e. the symmetric mode. 



SINUSOIDAL TRAILING EDGE POWER SPECTRA 
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Figure 4.15 Contour plots showing the velocity f*2-fluctuation intensities at different 

spamvise positions for the symmetric mode. For y/L=0 (not shown here), no fj component 

appeared in the spectra, while it becomes stronger and stronger as we move towards the valley. 



The antisymmetric mode spectrum is less spectacular. When compared to 

the spectrum of the whole signal, the only notable feature appears to be the 

relative increase of the fi component. It is not surprising that the antisymmetric 

mode still includes both peaks; we had already observed that the mode detection 

technique could not distinguish between the two antisymmetric modes and the 

oblique mode. 

It is, of course, possible that the fy peak is mainly due to induced velocities 

from the high frequency cell nearby. Figure 4.14 is a plot of the base pressure 

spectrum, using the same mode-splitting analysis technique. It is interesting to note 

that for the antisymmetric mode the two peaks represent the 2fy and the (fi+f;2) 

components, while the 2f2 component is either missing or is very weak. The 

presence of the (fi+f2) component, in conjunction with the weakness or absence 

of the 2f2 component may indicate that actual f2-shedding at the peak is very weak 

and that the f2 component of figure 4.13 is in reality much more the result of an 

induced velocity and less an indication of a shedding frequency at the peak. 

We conclude that the two-cell antisymmetric mode and the oblique mode 

are both very weak at the high Reynolds number of the wind tunnel, even if they 

regularly appear at the low Reynolds number water flume (the relation of the 

oblique mode to low Reynolds numbers having been observed by other 

investigators in the past, e.g. Gerrard, 1966a). Henceforth, if not otherwise 

specified, the term "antisymmetric mode" will mean the three-cell antisymmetric 

mode of the water flume. The f2 component in the antisymmetric spectra of 

figures 4.12 and 4.13 is therefore mainly the result of an induced velocity. Its 
presence (and its absence from the symmetric spectra) could indicate that the fj 

cell is larger in the symmetric mode than it is in the antisymmetric mode. 

The contour plots of figures 4.15 and 4.16 can give a clearer indication 

about the intensity of the f2 component at the two modes (note that figure 4.15 

does not include a plot for y/L=0; the f2 energy there was zero for the symmetric 

mode). We can see that up to y/L«0.1 the fluctuation intensity patterns appear to 

be less well structured (than, say, at y/L=0.1333), and also weaker, which is 

what we expected, given that the f2 component owes its presence predominantly to 

an induced velocity. 
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Fijjure 4.16 Contour plots showing the velocity f^-fluctuation intensities at different 

spanwisc positions for the antisymmetric mode. The f2 component is now stronger than lor the 

symmetric mode, but still quite weak in the region of the peak. 



4.3     Detailed results : straight trailing edge model 

The results presented in section 4.2 all concerned the sinusoidal trailing 

edge model. Separate experiments were conducted on a straight trailing edge 

model. As mentioned earlier, within a 10h spanwise region at centre-span the flow 

was found to be nominally two-dimensional. This means that statistical properties 

(e.g. Strouhal number and base pressure) do not vary along that portion of the 

span, although there may be plenty of irregularities in the flow, and the phase of 

vortex shedding may show spanwise variations. This section thus aims to identify 

some of these irregularities. Where appropriate, these identifications will be in the 
light of the observations made for the sinusoidal model. 

4.3.1   Discussion of velocity power spectra 

The power spectra of the velocity fluctuations in the wake of the straight 
model do not really present any new features. Some general comments will be 

made however, comparing these spectra to the ones obtained from the sinusoidal 

model. Figure 4.17 has five spectra obtained at different distances from the wake 

centre-line. The most noticeable feature is the single shedding frequency, at 

S=0.24. At z/h=0 the peak is (due to symmetry) at a value of 0.48. All this is 
quite standard. 

Let us now consider what the effects of irregularities in the spectrum of a 

nominally two-dimensional wake would be. We can observe from figure 4.17 that 

the bandwidth of the S=0.24 peaks is quite large, which means that we could 

expect some shedding cycles to occur at reduced frequencies as low as 0.2 or as 
high as 0.3. It is suggested here that if we could obtain the same spectrum for a 

real two-dimensional flow (e.g. by a two-dimensional C.F.D. code) we would 

observe a narrower peak. The width of the spectrum peak could hence be a 

measure of the degree of three-dimensionality in nominally two-dimensional, but 
actually three-dimensional flows. 

Taking this a step further, we can imagine an instant when two 
neighbouring spanwise positions A and B sandwich an irregularity, say a vortex 

split. This could have been caused by position A shedding at a frequency below 

0.24 and position B at a frequency above 0.24. Instantaneously, we would have a 

"dual frequency characteristic" similar to that observed regularly for the sinusoidal 
model. At this instant we could also expect the base pressure to rise (towards the 

levels of the sinusoidal model), thus causing a fall in the average drag for the 
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Figure 4.17     Straight trailing edge model: velocity power spectra for x/h=0.733 a 
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Figure 4.18     Contour piots shouing the velocity fluctuation .ntensiües W„hin the near wake 

of the straight trailing edge model, for different frequency ranges. 
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STRAIGHT TRAILING EDGE BASE PRESSURE FLUCTUATIONS 
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Figure 4.20     Two three-dimensional plots showing the irregularities (in both time and 

spanwise position) of the base pressure fluctuations. 



STRAIGHT TRAILING EDGE BASE PRESSURE FLUCTUATIONS 
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Figure 4.21     Two more three-dimensional plots showing the irregularities (in both time and 

spanwise position) of the base pressure fluctuations. 



If the signals were much purer, we would expect most of their energy to 
accumulate around the shedding frequency. For ranges that do not include the 

shedding frequency, we would have basically random signals and zero correlation. 

That for the 0.025-0.075 frequency range (which does not include any peak), we 

get finite values of correlation length (again lower for the pressure signal), thus 

means that the low frequency fluctuations in the wake may have some physical 

significance, similar perhaps -if less well defined- to the fö-f l) component of the 

sinusoidal model. 

4.3.3 Pressure irregularities 

The higher noise level of the pressure signals can not all be attributed to 

electrical interference. Estimates of the signal-to-noise ratios of the pressure 

transducers could not wholly explain the low correlation lengths. A large part of 
the pressure signal noise is due to "genuine" base pressure fluctuations. Figures 

4.20 and 4.21 show four frozen time-histories of spanwise distributions in base 

pressure. 

The high frequency oscillations in these plots correspond to the reduced 

frequency of 0.48. There are a few more noticeable features, apart from these 

oscillations. First, there are periods of relative peace (e.g. at the end of figure 
4.20b and at the middle of figure 4.21a), in between periods of intense activity. 

Within these intense activity periods, we can observe large amplitude pressure 

fluctuations and also very large pressure gradients. 

The plots of figures 4.20 and 4.21 give sufficient explanations on why the 
correlation length of the pressure signals is so much lower than that of the velocity 

signals. However, we have still not made any progress in understanding the cause 

of these large pressure gradients and pressure fluctuations. Suggestions about then- 

cause are given in a later discussion chapter. 

4.3.4 Flow visualisation: the presence of irregularities 

Flow visualisation experiments were also conducted for the straight edge 

model, mainly in order to identify the nature of the spanwise irregularities. The 
extent to which the flow in water (Re=2500) was similar to the one in air 

(Re=40000) is unclear. The pattern of the observed irregularities (to be described 

later) could be what one would expect for Lc=4h, but since no quantitative 
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measurements were made, one cannot be entirely sure. Figure 4.22 includes 

photographs showing the main flow characteristics. 

The correlation coefficients r(t) computed earlier all showed maxima at 

t=0, which probably suggests that the most usual state for the straight edge model 

is parallel shedding. Parallel shedding was also observed most frequently in the 

water flume and can be seen in photos (a) and (b). Although the vortex filaments 

in these two photos show smaller-scale irregularities and non-uniformities, their 

main axes are parallel to the model trailing edge. The flow could stay in this mode 

for a number of shedding cycles before irregularities appeared. An oblique mode 

was also observed, as can be seen in photos (c) and (d). In the light of 

observations made about the sinusoidal model, we should probably associate this 

oblique mode with the low Reynolds number of the water flume. 

Photos (e) and (f) show instants when irregularities occur. In (e), the 

vortex filaments have become wavy and vortex splitting is occurring towards the 

top of the picture. Similar, if less clear, vortex splitting is occurring in (f). Vortex 

splitting was observed in many instants and could either happen continuously (for 

a number of cycles) to accommodate a phase change along the span, or could 
happen for a limited number of cycles in order to facilitate a mode transition (s^y 

from oblique to parallel). 

Photos (g) and (h) are close-ups on the separated shear layer. The wide 

dark strip immediately after the trailing edge is the shear layer before vortex 

formation. The laser sheet was adjusted for these pictures in order to illuminate 

that plane, as opposed to the more central plane of the wake for the previous 
pictures. The pictures are not so clear because the shear layer has not yet rolled-up 

into a vortex and hence the precipitate density is not so high. In any case, one can 
still see irregularities in the separated shear layer. Where the colour is less dark, it 

has "dipped" behind the laser sheet and is hence less visible. This "pulling" of the 

shear layer towards the centre wake could be related to a momentary drop in base 

pressure, at these spanwise locations. 

A transition from the oblique to the parallel mode has been captured by the 

sequence of figure 4.23. The period between two successive shots is approximately 

one shedding cycle. At (a) we can see oblique, slightly bowed vortices. As we 

progress through (b), (c) and (d), the top of the pictures seems to lag behind in 
vortex shedding, and thus a kink starts to develop in the vortex filaments, a bit 

above the centre of the picture. When the angle of the vortex becomes too large, 
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Figure 4.22 Flow visualisation for the straight model. For photos (a) to (f), the laser sheet 

illuminated the z=0 plane (centre wake), (a) and (b): parallel shedding, (c) and (d): oblique 

shedding, (e) and (f) vortex splitting-irregularities. For photos (g) and (h), the laser sheet 

illuminated the separated shear layer and some three-dimensionality can already be seen within 

it. 



Figure 4.23 Flow visualisation for the straight model. Cycle-by-cycle capture of the 

transition from oblique shedding to parallel shedding. Vortex splitting can be seen (with 

different clarity) in photos (c) to (f). 



vortex splitting occurs, the top of the picture effectively having missed one 
shedding cycle. The split can be seen in three photos (i.e. three consecutive 

cycles). Eventually, the shedding above and below the split gets in phase and the 

transition to parallel shedding has been completed, as is shown in (g) and (h). 

Figure 4.24 is also a sequence (frame-by-frame this time) of an irregularity 

of some kind. The patterns observed most of the time would be of regular 

shedding, as have been recorded by numerous researchers in the past. In this 

sequence, however, we can see a direct interaction between the forming vortices in 

the upper and the lower side of the wake. At photo (a) and (b) a vortex is being 
fed with vorticity by the separated shear layer, very much according to Gerrard's 

model discussed in the first chapter. Before it has time to get cut off and shed 
downstream, vorticity has started gathering on the opposite side of the wake. The 

accumulation of this opposite-signed vorticity causes first, the flattening of the 

upper vortex, as can be seen in (c), and eventually tears it in half, as is shown in 

(d) and (e). In the remaining frames, the upper vortex (now considerably weaker), 

gets shed downstream, while the lower vortex (most probably also weaker), 

continues to form. The upstream half of the torn vortex is now propelled within 

the near wake towards the model. It is unclear to what extent its vorticity has been 

cancelled due to the influence of the lower vortex. 

Patterns such as the one just described were not observed in such a clear 

form very frequently. However, similar irregularities were observed occasionally. 
These have to be related to the irregularities observed in figures 4.22 and 4.23. It 

is unclear what we would had seen had we been able to observe the irregularity of 

figure 4.24 from a different angle. 

4.4     Similarities between the two models 

The aim of this chapter was to present the general features of the wake 

flows for the two model configurations (sinusoidal and straight trailing edge). 
Although a plethora of interesting features were observed, explanations have not 

yet been given, and the aims of this project (section 2.1) have not yet been 

approached. The next four chapters will thus aim to draw more general 

conclusions on the dynamics of the near wake, based on the results presented in 
this chapter. This attempt for an improvement of our understanding of the near 

wake dynamics (irrespective of model geometry) would be more in line with the 

specific aims of this project. The models studied here (especially the sinusoidal 

model) do not have real practical applications, but are tools that will hopefully 
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Figure 4.24 Flow visualisation for the straight model. Frame-by-frame sequence which 

shows a Kärmän vortex being torn apart under the influence of strong vorticity at the other side 

of the wake. 



enable us to understand wakes in a better way. Hence, if a further understanding 
of the specific flow details for the present models does not aid us in drawing 

general conclusions, it is then of little significance for this study. 

A variety of broadly similar features were observed in the flows around 

both models, which justifies the particular choice of geometrical disturbance for 

the sinusoidal model. These are listed below: 

a) The presence of large-scale irregularities (in particular vortex splitting). 

These were observed regularly in the sinusoidal model and less regularly in the 

straight model. As a consequence, one would expect dislocations to appear in the 

wake of the straight model, but for smaller durations, and in less well-defined 

positions. 

b) A low frequency component was observed for the sinusoidal model. 

Evidence emerged that for the straight model similar low-frequency fluctuations 
exist, but not at a so well-defined frequency. 

c) Large base pressure fluctuations and instantaneous pressure gradients. 

Although it was not mentioned in section 4.2, pressure fluctuations of exactly the 

same nature as described in section 4.3 for the straight model were observed for 
the sinusoidal model. These did not seem to be under any particular influence from 

the geometrical disturbance, and hence were presented only once, for the straight 

model. 

The results of this chapter show that it is therefore scientifically valid to 

compare the flows around the two models. The next three chapters will split the 

problem in three parts: 

Chapter 5 will concentrate on the dynamics of the dislocations. As these 

were more prominent for the sinusoidal model, they will be predominantly 

discussed under that prism. 

Chapter 6 will present a theory on the dynamics of the formation region, 
and how the various three-dimensional wake parameters interact. Again the 

regularity of the sinusoidal model makes it attractive for the basis of discussion of 

that chapter. 

Chapter 7 will present results related to chapters 5 and 6, but obtained by 

using a conditional sampling technique. 
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Chapter 8 will discuss the large, instantaneous base pressure gradients 

which featured in both flows. The emphasis of that chapter will be on the effects 

of non-Karman vortices. As the pressure gradients did not seem to be affected by 

the sinusoidal model disturbance, their discussion will focus on the straight edge 

model. 

These three aspects are, of course, not independent, and their separation 

into three main discussion areas is purely for practical reasons. Their inter-relation 

will be discussed at a later stage. 
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5.        ON THE DYNAMICS OF VORTEX DISLOCATIONS 

ABSTRACT : The dynamics of vortex dislocations at high Reynolds numbers are 

discussed. A mechanism is proposed which explains the significance of a 

characteristic dislocation frequency, fjj in the near wake dynamics. It is suggested 

that f(j is a result of the geometrical properties of the vortex filaments. It is 

proposed that a link exists between the dislocation frequency and fluctuations in 

base pressure, vortex strengths and spanwise dislocation position. The downstream 

evolution of the dislocation is also studied. The low frequency cell is found to 

expand in the spanwise direction. 

5.1     Introduction 

5.1.1   The term "vortex dislocation" 

The term "vortex dislocation" has been used by Williamson (e.g. in 1992a) 

who borrowed it from solid mechanics, where a dislocation is a discontinuity in 

the ordered crystal structure of a solid. In fluid mechanics, the term is not yet 

widely used, but seems to be quite appropriate to describe discontinuities in vortex 

filaments, such as vortex splitting observed in wake flows. Williamson's work has 

mainly concentrated on low Reynolds numbers, and has given some fresh insight 

into a phenomenon that has been identified (as was mentioned in chapter 1) by 

numerous researchers in the past. 

Williamson suggests that vortex dislocations may be a generic feature of 
transition to turbulence in all shear flows. In the present investigation, vortex 

dislocations were observed at high Reynolds number flows, where the shear layer 

is already turbulent even before separation. Thus the effects of the turbulent 

transport of momentum and voracity would not allow the fine details (e.g. "vortex 
wisps") observed by Williamson for low Reynolds numbers to exist in such a well- 

defined way. 

It is thus the purpose of this chapter to discuss the dislocation dynamics at 

higher Reynolds numbers. The experimental basis for the discussion will be the 

results obtained from the sinusoidal model. The regularity of vortex splitting in the 

wake of that model made the study of such complicated flow phenomena a bit 

easier. 
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5.1.2  The elementary causes of a vortex dislocation 

The fluid dynamics of the dislocations are dominated by highly complicated 

effects. Nevertheless, a surprising number of studies dealing with dislocations 

(whether that specific term is used or not) ignore the elementary reasons for the 

existence of dislocations in wakes. This is, of course, not to imply that these 

reasons (to be identified below) are not known or appreciated by almost anyone 

involved in this field. Simply, their identification (even though it may seem a 

statement of the obvious) puts the problem into a proper context, with a 

simplifying effect. 

The observations to be made below concern the near wake, i.e. a region 

extending from the body up to a short distance beyond the formation position. In 

the near wake the main phenomenon is the formation of a vortex. Vorticity 

cancellation can occur during formation through the process of entrainment. At the 

moment when a vortex is cut-off, however, its core still covers a fairly confined 

region in space, and for a while vorticity cancellation (due to the merging of 

Kärmän vortices of opposite sign) is very limited. Thus it is a useful assumption to 

consider the formed vortex as discrete. The consequences of this are to be 

described below. We should, however, make a cautionary note: at high Reynolds 

numbers in particular, soon after formation, the turbulent vortices start to become 

more diffuse (they spread out) and soon start to interact with vorticity from the 

other side of the wake. Thus, for high Reynolds number flows one should be 

careful in treating vortices beyond the near wake as discrete. In the near wake, this 

assumption seems to be quite valid for the fully-formed vortices. 

As was mentioned in chapter one, dislocations in the near wake mainly 

consist of two phenomena (or their combination). In vortex splitting, as the name 

implies, a vortex splits in order to get connected to two vortices on the other side 

of the dislocation. By its nature, vortex splitting accommodates abrupt spanwise 
variations in the phase of vortex shedding. It should be stressed once again that 

spanwise variations in the total circulation flux at each side of the near wake 
cannot be accommodated by vortex splitting. In vortex splitting, vorticity merely 

re-distributed in different "groups" (the vortex lines). On the other hand, spanwise 
variations in circulation flux (at each side of the wake) can be accommodated by 

vortex looping, where a vortex loops across the wake in order to join with one or 
more of its oppositely-signed counterparts on the other side of the wake (vortex 
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looping, of course, cannot deal with the previous problem, the spanwise variations 
in shedding phase). 

Hence we should see both phenomena as consequences of the fact that 

vortex lines cannot end abruptly in the fluid. Each mechanism has its own 

topological characteristics that allow it to deal with a specific task in the near 

wake. Even though there may be flows where combinations of these two 

mechanisms prevail, these mechanisms are distinct and should not be confused. 

Generally speaking, vortex looping is less likely to happen because it 

requires an interaction between the two sides of the wake. The times scales 

involved in the formation of vortices seem too brief for such interaction to take 

place across the wake, under normal circumstances. Hence, vortex looping can be 
found predominantly when very abrupt spanwise changes occur, such as a step 

change in cylinder diameter, a free end, or an end-plate. 

On the other hand, in vortex splitting, the redistribution of vorticity 

happens on the same side of the wake, and could even be controlled at a very early 
stage within the separated shear layer, before vortex formation. Hence vortex 

splitting does not have the time scale problem that vortex looping has, and can 

occur with milder disturbances (or even, as was seen in the previous chapter, in 

nominally two-dimensional flows). 

Throughout this study, there was no evidence of vortex looping, either in 

flow visualisation or in measurements. Hence, in this chapter (and in later ones), 

the term "vortex dislocation" will concern vortex splitting only, unless otherwise 

specified. The basic effect of a dislocation will then be the accommodation of 

abrupt spanwise changes of vortex shedding phase. 

5.2     The existence of a characteristic dislocation frequency 

5.2.1   The presence of the dislocation frequency in the wake 

As was shown in the previous chapter, in the present investigation there are 

two neighbouring cells, each with its own, distinct shedding frequency (f\ and f2, 

where fi <f2>- In the vicinity of the cell boundary, a frequency component fö-fi) 
was also observed. It was noted that this component must be the result of a non- 

linear interaction of the two shedding frequencies of the neighbouring cells. This 

fitted in well with the observation that (f2~fl) is in fact the frequency of vortex 

105 



Splitting. We can therefore define the dislocation frequency fd as the frequency 

difference (f2"fi)- 

It is easy to jump to the conclusion that the low frequency fd peak in the 

spectra is a direct consequence of the coexistence of f\ and f2- However, this does 

not seem to be the case. Examining the spectra of figure 5.1 (for y/L=0) and 

figure 5.2 (for y/L=0.2), we can see that while in some cases the low frequency 

component is very prominent, in other cases it is virtually non-existent. In all 

graphs (except when z=0) we have both fj and f2 present. 

Figure 5.3 summarises, in effect the above, with the contour plots each 

showing the distribution of power spectral density (associated with the low 

frequency, fd) in the near wake at different spanwise sections. The low frequency 
seems to be present mainly very close to the body (at x<h). Interestingly, there 

also appears a well-defined (if not so energetic) low frequency patch in the centre- 

wake, further away from the model. 

5.2.2   The geometry of vortex filaments: fluctuations in formation region size 

Let us now consider the two neighbouring cells, shedding at fi (in the 

region of the peak) and at f2 (in the region of the valley). In order to 

accommodate the different numbers of vortices shed in the two cells, vortex 

splitting must occur at a rate of fd, the characteristic frequency of the dislocation. 

In the immediate vicinity of the dislocation, we now have to consider what effect 

vortex splitting will have on the geometry of the vortices. On the two sides of the 

dislocation, vortices will some times be in phase and some times out of phase (the 
phase difference fluctuating, in fact at fd). When they are in phase their 

interconnection will be quite simple, but when they are out of phase, vortices will 
have to bend in some way in order to meet their counterparts on the opposite side 

of the dislocation. Taking this argument a step further, if we now imagine these 

two cells gradually getting out of phase, the vortices will have to become more 

and more bowed. Thus the degree of vortex bowing will change, also at fd- 

The bowing of vortices is an effect that was observed also in the water 

flume. In the sequence of figure 4.10, we can see how the angle of bowing 
increases in photos (a) to (d), as the cell at the peak starts to lag behind its 

neighbours in its shedding of vortices, with the phase difference across the 
dislocation rising. When vortex splitting occurred, the cell at the peak found itself 
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suddenly leading rather than lagging in phase. Thus, from (e) to (h), the shedding 

phase difference decreases, with the bowing getting less and less pronounced. 

This "bowing" of the vortex filaments in the vicinity of the dislocation will 

have some effect on the size of the formation region: if at a certain spanwise 

position the forming vortex has to bend backwards, towards the model, the 

formation region will effectively shrink in size. Similarly, if the vortex bends 

away from the model, the formation region will grow. In the present case, we 
have shown why the "bowing" has to be periodic, from purely geometrical 

considerations. As a result, the formation region in the vicinity of the dislocation 

will have to fluctuate in size at the characteristic dislocation frequency %. 

The periodic fluctuations of the formation region size seem to be reflected 

in figure 5.3. The most energetic parts of the contour plots seem to be close to the 

body, roughly where one would expect the re-circulating region to be. The peaks 

are close to the actual vortex formation positions. If we imagine the formation 

point changing position from one cycle to another, we may expect the points in the 

vicinity of this formation point to show the largest, low-frequency velocity 

fluctuations. It is interesting to point out that the most energetic plot is at 

y/L=0.133, not at the peak. This ties in well with observations made in flow 

visualisation and in measurements, regarding the position of the dislocation. 

The formation region hence shrinks and grows at the dislocation frequency. 

In the few shedding cycles when the formation region is at its lowest size, the 

separated shear layers will have to bend inwards, towards the centre-wake, more 

steeply. This will have to be balanced by a decrease in base pressure. Thus, 
according to these considerations, the base pressure will have to fluctuate at the 

dislocation frequency, in order to balance the periodic shrinking of the formation 
region. These low-frequency base pressure fluctuations were the most notable 

feature of the base pressure spectra (figure 4.9). 

We have thus seen how the presence of two cells shedding at different 

frequencies causes low frequency fluctuations in base pressure and near wake 
velocities. An important part in the described mechanisms has been played by the 

body. In its absence, this theory could not be supported and it is conceivable that 

we could have the dislocation separating the two cells without any noticeable peak 

in the spectrum at f^, as was seen in the lower parts of figures 5.1 and 5.2. It is 
therefore proposed here that in trying to understand the physical reason of the f<j 

component in spectra we should look back to the effects of dislocations in the near 
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wake. Treating this spectral component as an inevitable feature once we have the 
simultaneous presence of two frequencies f\ and f2, puts us in danger of missing 

important physical explanations of the wake dynamics. 

5.2.3  The strength of the formed vortices 

We will now consider the strength of the vortices that have been created 

under the influence of the above theory. If we imagine a vortex that is being 

formed, its eventual strength will be related to the base pressure (as the circulation 

shed from the body is a function of the base pressure). Hence, if the base pressure 

fluctuates at an fy frequency, the strength of the vortices being shed will also 

fluctuate in a similar way. This hypothesis may partly explain the presence of the 

low frequency "patch" which can be seen further away from the formation region, 

close to the centre-wake in figure 5.3 (the patch can be seen quite clearly in the 

top contour plot, but also exists -if in a less pronounced manner- in the lower two 

plots). Depending on their sign, vortices pass either just above or just below this 
region. If their strengths fluctuate at the dislocation frequency, their induced 

velocities on the centre-wake will also have an fy frequency component. The 

effects of the oppositely-signed vortices of the two sides of the wake will be 

stronger in the region between them, but weaker further away from the centre- 
wake, an explanation that agrees well with the observed pattern in the contour 

plots. 

As was discussed in the introduction of this chapter, the net effect of the 

dislocation in this flow is the re-distribution of vorticity of each sign into different 
groups. In the near wake, the flux of, say, positive circulation is preserved along 

the span. We therefore have to consider the mechanisms through which vortices 

link from this point of view: the total strength of the vortices on the one side of 

the dislocation must be equal to the total strength of the vortices on the other side. 

In explaining this phenomenon, Williamson (1992a) considered two cells of 

vortices with a 9:10 frequency ratio. Figure 5.4 presents his ideas for vortex 
linking across a vortex dislocation. Diagram (a) is based on his flow visualisation 

pictures, while in diagram (b) an idealised sketch of bis vortex connection pattern 

is given (similar sketches have been proposed in the past by a number of authors). 

Although the sketch is for a "two-sided" dislocation, it seems that his proposed 

pattern would be the same for a "one-sided" dislocation (we would just have to 

consider half the diagram). To preserve total circulation flux across the 
dislocation, vortex strengths are taken to be of the ratio 10:9 (low frequency 
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vortex strength=r0, high frequency vortex strength=9r0/10). His proposal of the 
existence of "vortex links" is backed by his flow visualisation pictures, presented 

in the same paper. According to their strengths, he classifies the links into 

"primary links" (with strength>T0/2), and "weak links" (with strength <r0/2). 

The idealised diagram shows how the one cell could be connected to the other, 

through a series of such links of different strengths. Weak links do not, as a rule, 

appear in flow visualisation pictures, as their vorticity tends to be less intense. 

In Williamson's proposed vortex connection scheme, one simplifying 

assumption is made: all vortices in each cell are considered to have the same 
strength. We have seen how, through the influence of the body and its near wake 

dynamics, this assumption is not necessarily correct. Earlier in this section, it was 

proposed that vortex strengths may fluctuate at the dislocation frequency. 

Williamson's dislocation model is for a far wake, and the influence of the body 

there is less apparent (but perhaps equally important). 

A significant parameter in whether the vortex strengths fluctuate or not has 

to be the spanwise size of the cell. If the cell extends over a large portion of the 

span, the strength of the individual vortices would have to remain constant (from 

one cycle to another): the formation region fluctuations described earlier (resulting 

from the vortex dislocation) would be unable to spread over a large spanwise 
portion in order to have equal vortex strengths along the whole cell. On the other 

hand, however, if the cell size is small the influence of the dislocation could 
spread over its entire length, and vortex strengths could fluctuate. In Williamson's 

flow, the high frequency cell spreads over a large distance and hence his 
assumption for constant vortex strength seems reasonable. The same does not 

apply, however, for the low frequency cell. Its extent is limited and hence the 

dislocation could influence the whole cell. 

Under the light of the observations made previously in this study, 

concerning the dislocation frequency, with the size of both cells (low and high 

frequency) being comparatively small, we would expect that vortex strengths could 
fluctuate at both sides of the dislocation. Considering that the f\ cell has the 

smaller size, maybe such fluctuations are more prominent there. 

We have thus identified a possible source of "conflict" in the flow. On the 

one side, the presence of the dislocation (separating cells of two different 
frequencies) causes the vortices to bow in order to get inter-connected, thus 

causing fy fluctuations in formation region size and hence base pressure, thus 
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causing a tendency of vortex strengths to fluctuate (also at f(j), with vortex 

strengths changing from cycle to cycle. The other side of the "conflict", stems 

from the spanwise size of each cell. The larger the cells, the more difficult they 
"find" it to readjust the strengths of their vortices according to the dislocation 

frequency. 

One source of compromise in this conflict could again be found by 

considering the geometry of the vortex filaments. Let us consider an f\ vortex 

having to connect to an out-of-phase f2 vortex. Their connection depends on both 

vortices bending in order to meet each other. This could be achieved in a variety 

of possible bending combinations (fj-vortex bending a lot, f2-vortex not bending 

at all, or the other way round, or any intermediate "compromise"). Thus the 

degree to which vortices in each cell bend, could be determined by the flexibility 

of each cell to shed vortices of varying strengths, this flexibility itself being a 

function of the cell size. 

So far we have not considered what the effects of vortex links (in particular 

the weak ones) may be. Vortex formation and vortex shedding tend to concentrate 

vorticity (that initially is spread in the shear layer) into discrete "lumps". The 

existence of weak vortex links thus appears to contradict that tendency, even 

though it appears necessary under Williamson's linking model. If, however, 

vortex strengths are allowed to fluctuate at the dislocation frequency, it is 

conceivable that they may adjust themselves in order for vortex interconnection to 

be achieved with the smallest possible number of weak vortex links. This possible 

tendency towards minimisation of weak vortex links could be yet one more factor 
that contributes to the determination of vortex strengths (in conjunction with cell 

size influence and dislocation frequency vortex strength oscillations). 

It seems impossible, without considerably more sophisticated experimental 

technique, to determine the exact structure of vortex links. The occasional absence 
of weak links from flow visualisation pictures could either be attributed to the 

inadequacy of the visualising precipitate (smoke, dye, tin oxide, etc.), or could be 
due to the tendency of the flow to readjust the vortex strengths in the cells 

(possibly through the mechanisms described above, and only when such 
readjustment is possible) in order to make such (very weak) vortex links 

unnecessary. 

Vortex links, of course, make it impossible to define the exact time of 

vortex splitting, as vortex splitting (of different degrees) may be occurring in 
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practically every shedding cycle. It thus seems more appropriate to define as the 
time of a vortex split the time when one cell has missed one complete shedding 

cycle. For example, when discussing figure 4.10, in the previous chapter, in the 

sequence of the eight photographs one vortex split occurred (the central cell 

missed only one shedding cycle), even though this split appeared in more than one 

shedding cycle (more prominently in photos (c) and (d)). The possible fluctuations 

in vortex strengths, as well as the existence of weak vortex links, are both unclear, 
judging from the flow visualisation photos and also from the quantitative 

measurements. 

5.2.4  A possible mechanism for the spanwise motion of a dislocation 

So far we have had clear indications that two cells of different frequencies 

exist, at least part of the time. The cellular nature of the flow is apparent both 

from flow visualisation and also from the study of the spectra of figures 4.2 and 

4.4. Although the f2 cell may (and probably does) induce f2~frequency velocity 

fluctuations in the f \ cell (and hence this could explain the gradual changes in the 

spectra of these figures, as we move from the peak to the valley) it seems more 
probable that in our problem the cell boundary (the dislocation) is not fixed in its 

spanwise position (in fact, one would only really expect "fixed" dislocations in 

bodies that have a spanwise step change in their geometry, not in the smooth 

periodic disturbance of our model). As the geometric disturbance of the model is 
quite mild, and the flow so irregular, it would be surprising if the dislocation 

chose a particular spanwise position. 

Now let us consider, once again, the consequences of the bowed vortices. 

As was described previously, the vortices have to bend close to the dislocation for 

purely geometric reasons, in order to be linked to their counterparts on the other 

side of the dislocation. It seems reasonable to suggest, that on each side of the 
dislocation (at a given time) vortices will have to bend in opposite directions, i.e. 

while one will have to bend in the downstream direction, the other will have to 

bend towards the upstream direction. As a result, on the one side of the dislocation 

the formation region will tend to grow, while at the other side it will tend to 

shrink. 

According to the mechanisms described earlier, this will result in an 
increase in base pressure on the one side, but a decrease on the other side. It is 

easy to see that all these phenomena will occur at the f(j frequency, and that there 

will therefore be a periodic component in the pressure gradient across the 
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dislocation, also at the dislocation frequency. If we assume a mean, spanwise 

dislocation position, sustained perhaps by some mean pressure drop across the 

dislocation, the periodic pressure gradient will act to "push" the dislocation back 

and forth relative to its mean position. 

These ideas may give some insight into the physics behind the apparent 

unsteadiness in the dislocation position. They are not rigorously proven, and this 

mechanism may be either altogether wrong, or only partly responsible for the 

dislocation motion in the near wake. 

5.3     The downstream evolution of the dislocation 

The main aim of this work, as stated in chapter 2, is to study the dynamics 

of the near wake. This section will "stretch" the region of study a bit further 

downstream, up to positions 10h behind the model trailing edge, in order to 

observe the evolution of the dislocation created in the near wake. With this brief 
deviation from the near wake it is hoped that some interesting features of 

dislocations may emerge. 

5.3.1   Experimental observations 

The purpose of these measurements was to see whether the dislocation, 

once formed in the near wake, retained its spanwise position downstream or 

drifted in some way. Such a drift of the downstream dislocation position should 

not be confused with the movements in the spanwise position of the dislocation in 

the near wake, discussed previously. Those spanwise position fluctuations were 

not related to the motion of any fluid particles, but to the different position of the 
dislocation in successive shedding cycles. In the present case, we are interested in 

how inter-linked vortices evolve as they progress downstream. 

The net effect of such a dislocation drift would be that as we progressed 

downstream spanwise cell sizes would vary, i.e. one of the two cells would spread 

into spanwise locations occupied by the other cell further upstream. 

In the previous chapter, figure 4.2 showed the relative magnitudes of the 

two main frequency components (f\ and f2) at different spanwise positions in the 

near wake. Similar measurements were obtained at a downstream location of 10h 
and are presented in figure 5.5. Whereas in figure 4.2 the fj component was 

noticeable up to y/L=0.266, at the downstream position we can still see fj at 
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y/L=0.400. This implies that the fi cell has spread towards the valley. These 
effects are more striking in figure 5.6. In this plot, all spectra were obtained at the 

same spanwise position (y/L=0.333), but at different downstream locations. A 

noticeable feature is the gradual growth of the f\ component, indicating an 

increase in the influence of the f\ cell as we move away from the model. 

We should also make a note on the total absence of a dislocation frequency 

component in both figures. This supports the discussion in the previous section 
which had identified the presence of the body as an amplifying factor for the 

dislocation frequency. 

5.3.2  The expansion of the low frequency cell 

Let us now consider the motion of a "vortex junction", the point in space 

where two vortices of the same sign join into a single vortex. We would expect 
such junctions to exist in a dislocation, where, for example, two high frequency 

vortices are linked to one low frequency vortex, through the process of vortex 

splitting. Thus, by considering the motion of a "vortex junction", we can gain 

some insight into the downstream evolution of the dislocation. 

Towards the end of chapter 1, we had discussed Williamson's (1992a) 

proposals for the evolution of a vortex junction. Figure 1.12a, in particular, 

showed how the induced velocities due to a vortex branch would cause the 

junction to move axially, and the main vortex to split further. In the present study, 

however, we have observed the low frequency cell expanding. This appears to 

contradict with Williamson's proposed model: while in his proposals the tendency 
is for the main vortex to split further, in the present experiments the low frequency 

cell is expanding, which implies that the branch (high frequency) vortices are, in 

fact, merging. 

Figure 5.7 is a sketch (influenced by Williamson's sketch of figure 1.12) 

which shows a possible, high Reynolds number mechanism whereby the branch 

vortices could merge, with the junction position thus moving in the opposite 
direction from that suggested by Williamson. We can see a strong vortex 

(strength=r) that has split into weaker vortices (strength=I72) of the same sign, 

numbered (1) and (2). Let us now consider two planes, A and B, cutting the 

weaker vortices at the shaded areas, with plane A being closer to the vortex 

junction. 
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SCHEMATIC DIAGRAM OF A "VORTEX JUNCTION' 

Figure 5.7      Definition diagram of a "vortex junction", showing the two planes (A and B) 

discussed in the text. 



If we look, for reasons of simplification, at each one of the planes 
separately, we will see two vortex cores of strength 172, that induce a velocity on 

each other. In plane A, the distance between these cores is smaller, so the vortex 

core pair will tend to rotate quicker than that of plane B. As a result, closer to the 

junction the two vortices (1) and (2) will tend to twist in a helical manner and 

hence, the two vortices will get stretched. Stretching will result in the two 

turbulent cores being pulled towards each other (because of the large strain rates) 

and also becoming much more energetic. It thus seems likely that, under the 

influence of turbulent diffusion, the two cores will merge, close to the vortex 

junction. The effect of this on the position of the junction will be that it will 

appear to move in the direction of the vortices (1) and (2). 

An important role in this mechanism was apparently played by turbulence. 

It is uncertain whether a similar effect would be observed at lower Reynolds 

numbers. In any case, in the "rolling-up" mechanism suggested here could be the 

fundamental reason why the low frequency vortex cell seems to spread in the 

spanwise direction. 

5.4     Concluding remarks on the dynamics of the dislocation 

5.4.1   The interaction of unsteady wake parameters 

This chapter mainly considered the consequences of the dual frequency 

characteristic in the wake of the sinusoidal model. It is widely accepted that a 

dislocation is the unavoidable result of a significant spanwise discontinuity in the 

phase of shedding. The dislocation examined in this study is of the vortex splitting 

type, i.e. there was no evidence for any looping across the wake (vortices would 

only link-up with similarly-signed vortices). 

The source of the dislocation frequency, which was shown in this chapter 

to affect almost all parameters of the wake, is exactly the periodic variation of the 
shedding phase difference across the dislocation. If the two cells shed at f \ and at 

f"2, the period of the phase difference will be the dislocation frequency f(j (=f"2- 

fj). This chapter proposed numerous consequences of this simple fact: 

a) When vortices on either side of the dislocation are out of phase, then in 
order to get linked to each other they will have to bend. The periodic bending of 

the vortices results in a periodic fluctuation of the size of the formation region. 
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The dislocation frequency fluctuations of the base pressure are probably a result of 

this fluctuation in the formation region size. 

b) As a result of the fd base pressure fluctuations, Karman vortices should 

have strengths that also vary periodically, again at fy. 

c) The spanwise size of each of the two neighbouring cells must be an 

important parameter which determines the extent to which vortex strength 

fluctuations in the cell are permitted. A large cell will not be as "flexible" as a 

small one: formation region size and base pressure cannot fluctuate at ftf far away 

from the dislocation. The fluctuations in vortex strengths could also contribute in 

reducing the number of weak vortex links across the dislocation, which may 

explain why they have been difficult to observe in flow visualisation (they may, in 

fact, not be there). 

d) A further suggestion concerns the probable spanwise motion of the 

dislocation. Vortices bend in order to meet their counterparts across the dislocation 

(as described in (a)). But to get linked, vortices on either side will have to bend in 

opposite directions and hence when the formation region on the one side shrinks, 

the formation region of the other side grows. It is proposed that a consequence of 

this must be a periodic (at fj) pressure gradient across the dislocation, which may 

contribute in its spanwise motion. 

As a separate observation, the fj-cell was then found to expand 

downstream of the model, "eating into" the f2-cell. It was proposed that the reason 

for this lies in the dynamics of "vortex junctions", the region where two vortices 

join into one (as happens in vortex splitting within a dislocation). The two vortices 
were said to roll-up (in a helical manner), with the strain and turbulent diffusion 

being the reason they merge. 

5.4.2  Outstanding questions concerning the vortex dislocation 

Model geometry was an important factor in the logical progression of the 

theories presented in this chapter. Key consequences of the model geometry were: 

a) The dual frequency characteristic (to be discussed in more detail in chapter 

6). 

b) Vortex splitting only. No vortex looping due to mild geometrical 

disturbance. 
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c) Cell size. 

d) Flexibility in dislocation position (no abrupt spanwise geometrical 

disturbance). 

The theories presented in this chapter relied on these four points, and 

provided reasonable explanations for the specific phenomena observed in this 

flow. Outstanding questions fall into two groups: first, there are numerous 

uncertainties which concern the particular flow of this study, and second, other 

questions arise concerning the applicability of the proposals of this chapter to other 
flows. It is not possible to draw general conclusions from phenomena observed in 

the wake of just one particular model. Some of the unanswered questions about 

vortex dislocations in the near wake are: 

a) To what extent do weak vortex links exist (especially in high Reynolds 
number flows)? Are they really suppressed by the fluctuations in the strength of 

the Karman vortices? 

b) Is the periodic pressure gradient across the dislocation the only reason for 

its spanwise motion? 

c) What would be the effects of a fixed dislocation position, when fluctuating 

pressure gradients across it would not be balanced by its spanwise motion? 

d) What would be the result if the two neighbouring cells were large in 

spanwise size (i.e. if the Karman vortex strengths did not have the flexibility to 

fluctuate)? 

e) What happens when there is vortex looping (and what exactly causes it)? 

(A small question which requires a very large answer.) 

Thus the proposals of this chapter need to be confirmed for other flows 
satisfying similar conditions, and also need to be extended to flows showing 

significant differences from the present one, such as flows with stronger three- 

dimensionalities. 
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6.   ON THE DYNAMICS OF THE FORMATION REGION 

ABSTRACT : The dynamics of the formation region are discussed, by considering 

the interaction of mean, time-averaged quantities. It is suggested that forming 

vortices have a tendency to straighten-out. A concept is proposed which links the 

vortex formation length to other wake parameters, most notably wake width and 

base pressure. Wake similarity arguments are used in order to predict the 

distribution of mean shedding frequency along the span. A mechanism termed 
"spanwise lock-in" is proposed as the main cause for the discretisation of the mean 

shedding frequency into the two observed shedding frequencies. Fluctuations in 

the dislocation position are again said to play an important role in the wake 

dynamics. 

6.1     Introduction 

6.1.1 The mean wake parameters 

A theory was proposed in the previous chapter that discussed the 

significance of the dislocation frequency f<} for the dynamics of the near wake. A 

large number of the near wake parameters (formation region size, base pressure, 

spanwise dislocation position, vortex strength) were found to fluctuate at that 

frequency. Although the theory explained the dynamics of the low frequency 

fluctuations of all the wake parameters, it did take, a priori, the presence of the 

two shedding frequencies for granted. Furthermore, the mean values of all these 
fluctuating parameters were not considered: the important issue of the previous 

chapter was the dislocation frequency fluctuations. 

The theory to be presented in this chapter will try to establish the 

mechanisms that determine the mean values of the wake parameters. It is hoped to 
be able to adequately explain, for example, the fundamental cause of the dual 

frequency feature, the mean base pressure distribution, and other important mean 

wake characteristics. 

6.1.2 The two-dimensional formation region 

Two-dimensional near wakes have been the object of a large number of 

previous studies. In chapter 1 there was a description of Gerrard's (1966b) 

formation region dynamics model. Two characteristic lengths were suggested in 
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that paper: the distance from the body to the forming vortex (the formation length, 
If) and the thickness of the shear layer just before the point of vortex formation 

(the diffusion length). These two characteristic lengths were judged to play an 

important role in the balance of the vortex formation flows, diagrammatically 

illustrated in figure 1.1. 

A main issue that has attracted a lot of attention is the selection of the 

shedding frequency. It is interesting to note the similarity between older and more 

recent studies. Roshko (1954), Gerrard (1966b) and others have discussed the 

possible existence of a "universal" Strouhal number that would depend on 
characteristic length scales of the wake, not the model. More recent studies (e.g. 

by Karniadakis and Triantafyllou, 1989) have relied on the stability characteristics 

of wake velocity profiles to predict the Strouhal number. Conceptually, both 

approaches are based on the assumption that some kind of wake instability must 

determine the wake oscillation frequency. 

The theories mentioned above and also in chapter 1 highlight the level of 

complexity even of the two-dimensional near wake. In closing this very brief 

detour into two dimensions, a few important concepts should be emphasised. 

a) The role of the wake (and in particular the interacting shear layers) as a 

feedback mechanism is important for the sustaining of vortex shedding. 

b) The emphasis for the selection of the shedding frequency is more on the 

instability characteristics of the actual flow pattern of the wake, which in turn 

should be viewed as a consequence of the body geometry. 

c) A number of characteristic length scales (formation length, wake width, 

diffusion length) are important in order to predict the resulting flow pattern. 

6.1.3   The present study: the three-dimensional formation region 

Let us now consider the three-dimensional wake again. We expect the same 
concepts outlined above to apply, but with the addition of a few complicating 

factors: 

a) As was also discussed in the previous chapter, when there is no vortex 

looping in the wake, the total strength of the vortices that are formed and shed 

downstream, on each side of the wake, must be constant along the span. Again we 

should note that, for a high Reynolds number, this assumption holds for the instant 

125 



when vorticity from the shear layer is cut off (and the vortex shed downstream). 

When vortices from the two sides of the wake become more diffuse and start to 

interact further downstream, we should not use the above condition. 

b) In a similar way that lock-in occurs in many cases when some kind of 

periodic forcing is applied to the wake, in the three-dimensional wake we may 

have a spanwise form of forcing from one flow section to its neighbouring section. 

This could be significant should there arise a case of two (or more) shedding 

frequencies in the wake. 

c) Apart from the coupling of shedding frequencies along the span, there must 

also be some form of spanwise coupling in quantities like base pressure, formation 

length, etc. 

d) In the three dimensions we should also consider two more vortex effects: 

vorticity in the x and the z directions and also vortex stretching, both of which can 

not occur in two dimensions. 

For this chapter, the fact that key wake features like base pressure and 

shedding frequency were not constant along its span, made the sinusoidal model 

results more attractive for such a study. As a simplification, the diffusion length (a 

parameter considered by Gerrard to be a significant characteristic length of the 

wake) will not enter the considerations of the model to be presented. As it is 

mainly a function of the Reynolds number and the free stream turbulence level, 

and as the Reynolds number of this investigation is constant (Re=40000), the 

diffusion length will also be taken to be a constant, and hence not significant for 

any proposed model considering spanwise variations of wake quantities. 

An important feature that will enter our considerations will be the relation 

of vorticity destruction in the near wake (through entrainment and vortex 

cancellation) to the formation length. Generally speaking, the level of entrainment 

is expected to rise as the formation length becomes longer. 

6.2     A model for the determination of the mean wake properties 

6.2.1   The measurement of the mean formation length and mean wake width 

According to Gerrard's model (1966b), a vortex grows while it is being fed 

with vorticity from the separated shear layer. During its formation the position of 

its centre remains more or less at a fixed point relative to the body. When the 
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projected  curve 

Shear  Layer   Deflection=- 

Figure 6.1 Definition diagram showing the criterion for the determination of the formation 

position (whence the formation length, the wake width and the shear layer deflection can be 

derived). 



vortex becomes strong enough to draw the opposite shear layer across the wake, 

entrainment of oppositely-signed vorticity into the shear layer interrupts the 

feeding of vorticity to the growing vortex. It is at that instant when we can say that 

the formation process has finished and the vortex has been shed downstream. 

There now arises the question how to determine the formation position 

experimentally, for each spanwise position. A hot wire was made to traverse the 

wake covering a dense grid (cell size=0.1hx0.1h, local xmm=0.33h, local 
xmax= L93n> zmin=0> zmax=0-8n) for different values of y (spanwise position). 
The probe axis was parallel to the y-axis, so that it would record velocities induced 

by the predominantly y-oriented Kärmän vortices. With this set-up it is not 

possible to determine rigorously the formation position and hence some 

assumptions need to be made. 

If, for a given spanwise section, we imagine the circulation flux (instead of 

discrete vortices) through a vertical line, we may say that the point of maximum 

flux is related to the point along this vertical axis where the velocity fluctuations 

are at their maximum. For the time being, let us assume that these two points 

coincide. Thus, for each spanwise section and for each streamwise position we can 

determine the point along the z-axis where there is the maximum flux of 

circulation. Now, after their formation is completed, vortices are convected 

downstream, but also move slowly away from the centre-wake. Before the 

formation region, the vorticity-carrying shear layer is being pulled inwards by the 

suction in the near wake. We can thus conclude that the formation point is the 

point where the maximum circulation flux z co-ordinate is a minimum. This 
procedure of determining the formation point (also used by Bearman, 1965) is 

shown schematically in figure 6.1. In the top diagram, the maxima of the velocity 
fluctuation intensity curves are joined in order to determine the curve of maximum 

circulation flux. Once this has been obtained, the position of vortex formation is 

taken to be at the closest point of this curve to the centre-wake (bottom diagram). 

The measured formation position was used to determine the formation 

length, If (the values presented later always using the local trailing edge as the 

reference) and the wake width at formation, wf. As the analysis of the signals used 
spectral techniques, it was considered advantageous to select appropriate frequency 

ranges in order to determine the velocity fluctuation intensity curves. In that way 

we can detect the mean formation position for each of the two shedding 

frequencies and also we can eliminate the irrelevant interference of noise and any 

other non-shedding frequencies. All evaluations of maxima or minima of curves 
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used a polynomial fitting technique to detect a maximum (or minimum) lying 

between two node points of the grid traversed by the hot-wire probe. 

Schaefer and Eskinazi (1959) used a simple viscous core model for the 

wake and showed analytically that the actual maximum circulation flux is not 

exactly at the point stated above, but a bit closer to the wake centre. The 
maximum velocity fluctuations were found to be approximately at the immediate 

neighbourhood of the core edge, farthest from the centre-wake. This effectively 

means that the actual wake width is smaller than the values to be obtained by the 

method described above. No estimate was made for the vortex core diameter, and 

therefore the suggestions of Schaefer and Eskinazi will not affect the results 

presented later, but should nevertheless be kept in mind. 

6.2.2  The formation length 

The formation length was measured for three frequency ranges: fi 

(S=0.24), f2 (S=0.29) and the combination of these two shedding frequencies. 

Figure 6.2a shows the formation position relative to the model trailing 

edge. We can see that the forming vortex has the tendency to straighten out and 

not follow the exact shape of the model trailing edge. This is reminiscent of the 

vortex volume minimisation tendency observed also by Breidenthal (1980). 

Generally, the total induced kinetic energy of the forming vortex would be larger 

if that vortex followed the model trailing edge. We can therefore perhaps attribute 

this straightening out of the forming vortex to the inherent tendency of the flow to 

minimise its energy. 

Figure 6.2b shows the result of the vortex straightening. The formation 

length (always measured from the local model trailing edge) is longer at the valley 
than at the peak. The two shedding frequencies seem to show similar trends and 

from the diagram we cannot really distinguish between them. The first two points 

for the high shedding frequency (S=0.29) should not be taken very seriously. We 

have observed earlier that this frequency is very weak at the peak, its signal there 

owed to a large extent to induced velocity fluctuations. 

Figure 6.3 shows the distribution of velocity power spectral density for 

S=0.24. It is clear that this frequency dies off quickly as we move towards the 
valley. Therefore points for that frequency were obtained only up to y/L=0.266. 
The contrast between the two shedding frequencies is shown in the similar plots of 

figure 6.4. Here the fluctuation intensity is much smaller at the peak, but quickly 
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Figure 6.5 Contour plots showing the velocity shedding frequency (f j and (j) fluctuation 

intensities in the near wake or the sinusoidal model, at different spanwise positions. Note how 

the high fluctuation intensities occur further away from the model at the valley than at the peak. 



increases towards the valley. Of course we had observed the same trends when 

discussing the power spectra in earlier chapters, but as the scales there were 

logarithmic, it was perhaps not so easy to detect, for example, how weak the f"2 

fluctuations really are at the peak. 

Figure 6.5 shows the contours of the fluctuation intensities for the 

combination of the two frequencies. The results displayed in these last three 

figures were analysed according to the procedure of figure 6.1 in order to obtain 

values for the formation length and the wake width. That the vortex formation 

position is further away from the valley than from the peak is visibly obvious from 

figure 6.5. 

In the past, increase in the formation length has been generally linked to a 

reduction in base drag. This was observed by many investigators, e.g. by Bearman 

(in 1965 by the use of splitter plates and in 1967a by applying base bleed - see also 

figure 1.4). The thinking behind this idea is basically that an increased formation 

length means increased entrainment, i.e. weaker vortices, and hence less base 

drag. This trend is also obeyed in the present case when we compare the straight 

edge formation length (solid line in figure 6.2b) to the mean formation length for 

the sinusoidal model. The straight edge model had a higher base drag, which is 

complemented by a much shorter formation length. 

Let us now consider the sinusoidal model in detail. Previous measurements 

of the base pressure had revealed lower local base drag at the peak (see figure 

4.1). Presently, we have also observed (in figure 6.2b) a sigmficantly smaller 

formation length at the peak. This seems to contradict the trend discussed above, 

linking the drag to the formation length. 

Closer study will reveal that this phenomenon is not a contradiction to the 

previous theories but their extension into the third dimension. The base pressure 

Cpb can be related to the velocity at separation by the equation Cp\)=l-(xis/lPr, 

where us is the velocity outside the boundary layer at the separation point. Davies 

(1976) discussed the second order effect of the fluctuation of us and concluded that 

it was negligible. This was also checked in the present study reaching the same 

conclusion. The mean rate of vorticity shed from, say, the top edge of the model 
is given by dT/dt=(l/2)us

2, as all the circulation shed lies within the boundary 

layer. Now some of this vorticity is cancelled in the formation region, while a 
fraction a survives and contributes to the strength of the formed vortex of that 

sign. An expression for a is: 
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a = ^  (1) 
(l/2)Uh(l-Cpb) 

where Tv is the mean vortex strength just after formation. Note that the nominator 

here represents the circulation flux carried by, say, positive, Kärmän vortices, 

while the denominator is based on combining the two previous equations, and 

represents the voracity shed from the one side of the trailing edge. Effectively, the 

three-dimensional condition mentioned in the introduction of this chapter (resulting 

from the continuity of vortex lines and provided that there is no vortex looping), is 

that d(Srv)/dy=0. Now the relation of the fraction a to the formation length If 

was also explained earlier. As entrainment (and hence vorticity cancellation) 

increases with If, we would expect a to decrease as If increases (i.e. da/dlf <0). If 

we satisfy d(Srv)/dy=0 then from (1) we get da/dCp5>0. Hence, from these 

two inequalities and taking Crj)=-Cpb, we get dCrj/dlf >0, i.e. local base drag 
increases with formation length. 

To explain this qualitatively, when we have a larger formation length, there 

will be more vorticity cancellation, and hence, if we want to satisfy the condition 

that the total vorticity shed per unit time in the formed vortices does not vary 
along the span, we must have a higher rate of circulation shed at the trailing edge. 

This in turn implies higher separation velocity and hence higher drag. It should be 

stressed, once again, that the use of this concept is solely to be applied in order to 

compare local wake properties of different spanwise locations of a particular 

model. 

The explanation above thus agrees well with the observed trends in 

formation length and base pressure for the sinusoidal model. We should perhaps 

make a note here for the applicability of this concept to models of other shapes. If 

there is no vortex looping, it should be possible to apply some similar concept. 

However, in each case the particular relation between vorticity cancellation and 

the local spanwise conditions should be established. In the present case vorticity 

cancellation (due to the geometrical simplicity of the model) was directly related to 

the formation length. In some geometries we may have some spanwise variable 

(e.g. a splitter plate with a spanwise geometrical disturbance) which affects the 

level of entrainment. In such cases the application of the above concept is more 

complicated, as the relation between formation length and entrainment is not as 

clear cut as it is for the present investigation. 
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6.2.3   The wake width and the deflection of the separated shear layer 

The theory described in the previous section provided us with a good 

explanation on why the base drag is higher at the valley of the sinusoidal model. 
There is another issue, however, that is still unaddressed. Traditionally, the 

decrease of base drag with an increase of formation length had been also explained 

from the point of view of the curvature of the separated shear layer. A shorter 

formation length usually implied a shear layer curving more rapidly towards the 

centre-wake. This increased streamline curvature would have to be balanced (or 

even caused) by a larger pressure drop across the shear layer (as we move from 

the undisturbed stream towards the centre-wake). This factor thus seemed to fit in 

well with the traditional relation between formation length and base pressure. 

The curvature of the shear layer does not, however, depend only on the 

formation length but also on the wake width at formation. If the vortices form 

closer to the centre wake, the curvature of the shear layer will be larger. If we 

now compare the peak and the valley, at the valley we have longer formation 

length and higher local base drag. Therefore, in order to balance the larger drag 

by a higher shear layer curvature, we may expect a narrower wake. This agrees 

well with the trends of figure 6.2c (the triangular markers representing the mean 

wake width for both shedding frequencies - the variation between the two shedding 

frequencies will be discussed later). 

The curvature of the shear layer is a difficult quantity to measure 
accurately. Conceptually we could approximate it by the shear layer deflection 8. 

The definition of this quantity can be seen also from the lower part of figure 6.1, 
where a is taken to be the vertical distance between the formation position and the 

point of separation. Now a « If, and hence the shear layer deflection can be taken 

as 8=a/lf (since a=(h-wf)/2, we also get 5=(h-wf)/21f). Shear layer deflection is 

thus an easy quantity to measure, but we should not forget that it not quite the 

same as the shear layer curvature. We should therefore be cautious when thinking 

in terms of a direct Cpb-8 relationship. 

Shear layer deflection has been plotted against spanwise position in figure 

6.2d. Again the trend of the mean value seems to fit in well with the base pressure 

trend. Figure 6.2d also presents us with a somewhat surprising fact: if we plot 

values of 5 obtained for the two shedding frequencies separately, we can clearly 
see that the shear layer deflection at each of these two frequencies lies 

approximately on a 5=constant line. The difference between the two levels is 
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about 20%. Shear layer deflection is then found to be a function of shedding 

frequency, at least along the span of one particular model. 

The value of 8 for the straight edge model was found to be about 0.115. 

This initially seems surprising, as we would expect it to be larger than that 

observed for the sinusoidal model at fj. We should remember, however, our 

previous observation on the wake width, Wf. From Schaefer and Eskinazi (1959) 

we had concluded that the actual wake width is probably narrower than that which 

we measure by about two core radii. Our inability to measure the core diameter 

forced us to use this distorted value for wf. If we assume the core diameter to be 

about O.lh (probably a conservative estimate), the sinusoidal model values for 8 

get shifted up (to about 0.157 for fi and 0.166 for f2), while (due to its much 

shorter formation length) the straight edge would yield a value of 0.19. The above 

consideration should just serve to emphasise the pitfalls in interpreting the plots of 

8. The qualitative conclusions of figure 6.2d should be (a) that the combination of 

longer formation length and higher drag leads to a narrower wake, and (b) that 
there is a significant difference between the mean values of shear layer curvature 

at the two shedding frequencies (indicated perhaps by the 20% difference in the 

value of 8). 

6.2.4  The relation of the base pressure to the shedding frequency 

Given the conceptual connection between shear layer deflection and base 

pressure, it is tempting to say that the base pressure may also be a function of the 

shedding frequency, thus implying that base pressure may be fairly constant within 
each cell and that there may be a steady pressure gradient across the dislocation 

(this, of course, should not be confused with the fluctuating pressure gradient 
suggested in the previous chapter). Should this be the case, the smoothly varying 

base pressure distribution of figure 4.1 could be the result of a pressure gradient 

"step" (the theoretical discontinuity being the instantaneous position of the 

dislocation), moving back and forth with the dislocation. The mean base pressure 

at each point would depend directly on how much time that point spent at each of 

the two shedding frequencies. 

The latter could be obtained by measuring the mean shedding frequency. 

This was accomplished by counting velocity signal zero-crossings for large lengths 
of data. The resulting "time-averaged" Strouhal number is plotted against the span 

in figure 6.6b (square markers). The continuous lines show the two Strouhal 

numbers (fi=0.24 and f2=0.29). We can see how the time-averaged Strouhal 
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number lies between those two levels. By interpolation we can also deduce the 
proportion of time spent at each frequency. Note that from figure 6.6b, fj- 

shedding has to happen some times at the peak (but not very much), while f\- 

shedding never happens at the valley, in agreement with previous observations. 

We can now check the simplistic model that for any spanwise point, the 

base pressure fluctuates between two main levels, depending on the side of the 

dislocation the point lies on. Let us define the two levels to be Cpbi and Cpb2- 
Values for Cpbi and Cpb2 were estimated using a least-squares approximation to 

the known, mean base pressure distribution (Cpbi«-0.432, Cpb2Ä-0.479). The 

interpolated, time-averaged base pressure distribution is plotted together with the 

measured distribution in figure 6.6a. The agreement between the two seems to be 

quite good, perhaps justifying the simple model based on a 1:1 base pressure- 

shedding frequency relation. Note that the agreement is, admittedly, enhanced by 

the least squares calculation. The proposed base pressure model is quite crude, and 

reality is undoubtedly more complicated. Thus figure 6.6a serves to illustrate and 

prove a general tendency of the flow; to suggest that reality follows such a simple 

rule would be quite naive. 

We should pause to understand the physical significance of these 

observations. Clearly there is no universal relation between the base pressure and 

the Strouhal number: for the straight edge model the Strouhal number is equal to 

the low frequency Strouhal number of the sinusoidal model. As we have seen, the 

base drag is much higher. Thus emphasis should be put not on the S-Cpb 

relationship, but on the probable near-constant base pressure within each shedding 

cell. Now within each cell vortices are fairly parallel, apart from the edges, close 

to the dislocation. The tilting and bending of vortices close to the dislocation (for 

vortex splitting to occur) results in a strong streamwise component of vorticity, 

which may act to sustain a steep base pressure gradient at that spanwise dislocation 

position. We would not expect to observe similar levels of streamwise vorticity in 

the middle of a cell, and therefore the mean base pressure may not show any such 

step changes within that cell. 

If there was indeed a certain, constant mean base pressure value for each 

cell, we would arrive at a dead-end: the value of dT/dt would also have to 

fluctuate between two near-constant values (arising from Cpbi and Cpb2)- Then 

the link between formation length and base pressure would collapse, because in 
figure 6.2b the formation lengths for fj and f2 would each have to have a certain, 

139 



constant value. By the nature of vortex inter-linking, the formation length must not 

show any large discontinuities along the span (and indeed it does not). 

Based on the simplistic model linking base pressure to the shedding 

frequency, we may therefore suggest a more realistic one. In each cell base drag 

would still show a gradually increasing trend moving towards the valley. A steep 

change would occur across the dislocation. Given that the formation length does 

not show any equivalent discontinuities (figure 6.2b), it is possible that the 

discrepancy between the wake widths at the two frequencies (figure 6.2c) could 

compensate for the step change that would also occur for dT/dt (resulting from the 

step change of the base drag across the dislocation). The wake is a bit narrower at 

the high shedding frequency. The closer proximity of the two shear layers could 

increase entrainment, thus compensating this step change in dT/dt across the 

dislocation. 

Hence we can conclude that there will be a strong base pressure gradient 

across the dislocation. The pressure gradient is thought to be sustained by 

streamwise vorticiry that arises through the bending of vortex filaments in the 

vicinity of the dislocation. This pressure gradient is distinct from the one observed 

in the previous chapter that fluctuated at the dislocation frequency. 

6.2.5   The determination of time-averaged Strouhal number 

In our passage towards understanding the selection of the two shedding 

frequencies, we will first consider how the time-averaged Strouhal number could 

arise. The use of time-averaged quantities is valid as an approximation in this case 

because we want to establish general trends in the wake. Of course it would be 

nice to be able to explain the following phenomena in terms of the two shedding 

frequencies separately but, as will be discussed later, some complications arise in 

that case. 

The concept of a "universal" Strouhal number which was outlined in the 

introduction of this chapter has been appreciated since 1954 (Roshko). Very 

simply, it considers near wake properties to be the relevant parameters for the 

selection of frequency, as opposed to global properties. The Strouhal number, by 

its conventional definition, is given by S=f*h/U. Both the model height h and the 
free stream velocity U should not be considered as totally relevant parameters. In 
the near wake region where the vortex shedding instability arises, the flow cannot 

directly "know" what the values of U and h are. Hence, more relevant would be 

the local parameters, the wake width at formation (wf) and the velocity outside the 
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wake at that formation position. The latter wake parameter can be taken to be 

directly related to us (the velocity at the separation point, defined previously, 

where us/U=V(l-Cpb)). For the present study, we can thus define a "wake 

Strouhal number" S*? given by: 

_S(wf/h) 

The circular markers in figure 6.6b show the variation of this quantity 

along the span. A good collapsing of the shedding frequency has been achieved 

(S*«0.17 along he span), especially when the S* curve is compared to that of the 

time-averaged S (in the latter there is a much larger variation of the Strouhal 

number along the span). The value obtained for the straight edge model is also 

quite close. 

In terms of significance, the wake Strouhal number in the present study is 
less ambitious than the universal number suggested in the past by other 

investigators. It has not been attempted to predict the actual magnitude of the 
Strouhal number, but to explain how this number has to vary along the span of the 

sinusoidal model. The advantage of the present body geometry is that the second 
important characteristic length suggested by Gerrard (1966b), the diffusion length, 

does not vary along the span (variations due to formation length changes along the 
span can only be thought of as a second order effect). As a result, we are left with 

only one characteristic length (taken here to be the wake width) and we can thus 

apply similarity arguments to understand the selection of the time-averaged 

shedding frequency along the model span. Hence we have been able to explain 

why different spanwise positions have to shed vortices at different rates. 

6.2.6  The discretisation of the shedding frequencies 

The similarity arguments applied in the previous section established that 

there cannot be a single shedding frequency along the span of the sinusoidal 

model. In this particular case the flow has chosen two shedding frequencies (fi 

and f"2) and alternates between them, with fi dominating at the peak (but not 

completely) and f"2 becoming gradually more prominent and eventually totally 

dominant as we progress towards the valley. 

There is no obvious explanation why the flow has chosen two frequencies, 

instead of each spanwise section shedding constantly at the predicted time- 

141 



averaged frequency. We could conceivably have such a phenomenon, with vortices 
gradually getting out of phase and vortex splitting occurring at various different 

spanwise positions (this flow perhaps resembling the patterns observed by Gaster, 
1969, for the flow around slender cones). One reason this does not happen could 

be due to the tendency of the flow to reduce the volume of its vortices (a kinetic 
energy minimisation consideration). If the flow followed such a pattern, the 

vortices would probably tilt at fairly large angles and it is possible that this would 
be "uneconomic" in terms of vortex-induced kinetic energy. Obviously, no certain 

claim can be made for the scientific validity of the above argument. 

Perhaps a more plausible explanation could lie in some sort of spanwise 

flow "lock-in". We can observe from the spanwise distribution of time-averaged 

shedding frequency shown in figure 6.6b, that over a considerable portion of the 

half-wavelength (ca 0.27 <y/L< 0.5) the time-averaged shedding frequency is 

constant at S=0.29. It would then seem reasonable to expect that frequency to be 

chosen as one of the characteristic frequencies of the wake. Consequently, we will 
have a strong cell shedding at a uniform frequency. It is possible that under the 

influence of the induced velocities of that cell other spanwise sections occasionally 

get "locked-in" and shed at that frequency (note that we have established that the 

whole wake cannot get permanently locked-in at that single, strong frequency). 

The selection of the second characteristic frequency could then be forced in order 

to achieve the required value of time-averaged shedding rate for each spanwise 
position. Once a certain frequency (<0.29) has been established over a small 

portion of the span, it could (under the mechanism of the spanwise lock-in) spread 

out until the wake is dominated by these two characteristic frequencies. 

There is no evidence to support these suggestions, apart from the fact that 

the flow does indeed select two such frequencies. It seems possible that if a 

balance could not be reached with any two frequencies, one (or more) extra 

characteristic frequencies would emerge, and we would then have a considerably 

more complex flow pattern, with three (or more) shedding frequencies and 

multiple combinations of cells. In two-dimensional experiments, lock-in has been 

achieved under a multitude of different forcing conditions (in-line oscillation, 

transverse oscillation, oscillatory rotation, sound waves, etc.). It then seems quite 

reasonable to expect a spanwise form of lock-in (under the influence of velocities 
induced by the more dominant frequencies) and a consequent discretisation of the 

shedding frequencies. 
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It is not easy to examine wake similarity when using the two discrete 

shedding frequencies (as opposed to the time-averaged frequency), because we 

cannot be sure of the value for base pressure. Let us consider the two values 

obtained by the least squares approximation of the simplistic base pressure- 

shedding frequency model (for need of more accurate Cpb values). The wake 

Strouhal numbers obtained at the peak and the valley (respectively the 

"strongholds" of the f\ and the f2 characteristic frequencies) are both very close to 

the "universal" value of 0.17, but considerable deviations would occur at spanwise 

positions in-between the peak and the valley. It is uncertain whether these 

deviations are predominantly due to the unquestioned inaccuracy of the Cpb 

estimates. We should note, however, that while for a section left free to oscillate 

at its own preferred frequency we expect it to obey the wake similarity arguments, 

this should not necessarily be the case for a section temporarily locked-in to one of 

the two characteristic frequencies. 

6.2.7   Further observed phenomena 

A few more observations fitted in well with the proposals of this chapter: 

a) The fluctuation intensity of base pressure (R.M.S. of Cpb) is plotted 
against spanwise position y/L in figure 6.6c. The significantly larger values 

obtained at the peak are attributable to the closer proximity of the forming vortex 
and also to the larger mean vortex strength Tv at the peak (as S*rv=constant, and 

S is smaller at the peak, Tv must be larger at the peak). 

b) Figure 6.6d shows the power spectral density of velocity fluctuations at the 

formation position. The predominance of f \ at the peak and the total dominance of 

f2 at the valley have been discussed many times. It is interesting to observe the dip 

in the total power (for the two frequencies combined) at y/L«0.1-0.2. This 

spanwise position is the most frequent position of the dislocation. In its vicinity 

vortex filaments tend to be bowed, which may cause lower induced velocities for 
the particular orientation of the single hot wire. 

c) Figure 6.7 is a series of side views of vortex formation (a, b, c and d: 

y/L=0; e and f: y/L=0.25; g and h: y/L=0.5). The wider wake is noticeable for 

y/L=0. Note also that for the valley we can see the trailing edge of the peak, with 
the formation length mistakenly appearing to be shorter in that region. Photos (d) 

and (f) are indications of the less regular shedding observed towards the peak. 
Suppression of vortex shedding (even momentary) was never observed when 
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Figure 6.7 Flow visualisation for the sinusoidal model (side view). Photos (a) to (d): y/L-0 

(peak), photos (e) and (f): y/L=0.25, and photos (g) and (h): y/L=0.5 (valley). Note how the 

wake appears to be narrower at the valley than at the peak. 



looking at the plan view of the wake. Therefore we have to associate photos (d) 
and (f) with local instantaneous phenomena, the most probable of which seems to 

be vortex splitting. 

d) By using the mode-detection criterion described in detail in section 4.2.3, 

formation lengths and wake widths were measured for the two shedding modes 

(symmetric and antisymmetric). These results are plotted in figure 6.8. Both 

modes seem to follow the patterns of the average flow (i.e. the measured values 

without the use of any mode criterion). The largest discrepancies are found 

towards the edges of the cells, where we expect vortices to be weak and also to 

bend, under the influence of vortex splitting. It is also at the cell edges where the 

vortices are susceptible to the peculiarities of the shedding modes. We thus 

conclude that as far as the mean wake dynamics discussed above are concerned, 

the particular shedding mode is only of secondary importance. 

6.3     Concluding remarks on the dynamics of the formation region 

6.3.1   The interaction of steady wake parameters 

This chapter mainly concerned the mechanisms that determine the mean 

parameters of the near wake of the sinusoidal model. Purely in terms of time- 

averaged quantities, the following suggestions were made, concerning the near 

wake: 

a) Forming vortices have the tendency to straighten out, possibly in order to 
minimise their volume (an energy consideration). Due to the model geometry, this 

results in a longer formation length at the valley than at the peak. 

b) As a result of the d(STv)/dy=0 assumption, and the fact that the fraction of 

surviving vorticity, a, decreases with an increase in formation length (da/dlf<0), 
there must be a larger amount of circulation shed at the trailing edge (due to the 

longer formation length), and hence the local drag at the valley is larger than the 

local drag at the peak. 

c) High local drag implies high suction in the formation region, which in turn 
has to be balanced by an increased curvature of the separated shear layer. 

Therefore the combination of higher drag and longer formation length at the valley 

has to be balanced by a narrower wake (in comparison to the peak). 
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Figure 6.8 A comparison for the values of formation length and wake width (at the 

different shedding frequencies) for the two shedding modes (symmetric-antisymmetric). The 

two modes appear to follow a similar pattern. 



d) Wake similarity arguments suggest that the underlying mechanism for the 
selection of shedding frequency must be related to wake properties (i.e. wake 

width and velocity at separation, not model base height and free stream velocity). 

Applying these arguments, a higher time-averaged Strouhal number has to prevail 

at the valley, in order to balance the narrower wake and the higher separation 

velocity. 

It was further proposed that "spanwise lock-in" must be an important 

mechanism in the discretisation of the shedding frequency to the two distinct 

observed values. Through this mechanism, the most dominant frequency 
components could spread along the span. The dual frequency characteristic would 

then generate a dislocation. 

Wake properties at the two distinct shedding frequencies suggested that 

there must be a steady pressure drop across the dislocation. This pressure drop 
could be sustained by streamwise vorticity within the dislocation. Its periodic 

spanwise motion (as described in chapter 5), would then ensure (a) that the mean 
base pressure distribution does not show any steep drop across the mean 

dislocation position, and (b) that the time-averaged Strouhal number prediction is 

satisfied. 

The above proposals have been drawn from the flow around the sinusoidal 

model. It is probably appropriate to note at this point that the choice of a relatively 

simple geometry for the model (i.e. fixed separation point, minimal base area- 
shear layer interaction, etc.) has been fully justified by these results. Nevertheless, 

the proposals of this chapter need to be tested, confirmed and extended for 

different geometries, where important relations (such as the relation between the 

fraction of surviving vorticity and the formation position) follow different patterns. 

6.3.2   Quasi-two-dimensional flow considerations 

This chapter aimed to give a physical insight into the mechanisms that 

determine the parameters of the near wake. Obviously the flow is strongly three- 
dimensional. It is interesting to note, however, that for a large number of the 

arguments of this chapter quasi-two-dimensional considerations were used, with 

results that appear to be satisfactory. 

This is, of course, not to suggest that in each section the flow behaves as if 

it were two-dimensional, nor that the spanwise velocity component is negligible. 
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What emerges from this chapter is that some of the near wake phenomena are 

nearly two-dimensional: 

a) The predominant axis of the Kärmän vortices has remained parallel to the 

spanwise direction. 

b) Vorticity within the separated shear layer is also mainly in the y-direction, 
especially considering that the flow just outside it is almost aligned to the free 

stream. 

c) We have found the fluctuation spectra to be heavily dependent on the actual 

spanwise position, but to show no noticeable variation (regarding the relative 

magnitude of the two frequency components) between different points of the same 

spanwise section. 

It is therefore suggested that for a first order appreciation of the interaction 

of the main flow parameters, quasi-two-dimensional considerations can provide us 

with significant insight into three-dimensional wakes of mildly three-dimensional 

bodies. Such considerations should be always used with caution, however, and 

without forgetting the real, three-dimensional nature of the flow. 
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7.        CONDITIONAL SAMPLING 

ABSTRACT : Conditional sampling is used as a tool to obtain further information 

about the near wake. A detailed account is given of the conditional sampling 

technique used and also on considerable improvements that could be made to it. 

On the fluid dynamics front, indications emerge in favour of various assumptions 

or suggestions of previous chapters. The vorticity flux at each side of the wake 

after formation is found to be constant along the span (i.e. d(Srv)/dy=0). Vortex 

strengths are found to vary from cycle to cycle (in particular for the cell situated at 

the peak) and the spanwise position of the dislocation is found to move. 

7.1     Introduction 

7.1.1   The concept of conditional sampling 

In any unsteady fluid flow the experimentalist encounters a well-known 

problem: in quantitative experiments, the entire flow cannot be studied 

simultaneously. Usually, financial constraints confine us to measuring certain 

properties (in the present case, pressure or velocity) at a limited number of 

positions. Intrusive sensors (such as a hot-wire probe) can not be used in large 
numbers, as the flow disturbance would then become too large. Laser-Doppler 

Anemometry (L.D.A.), a non-intrusive method, is still too expensive for us to be 

able to measure more than a few flow "spots" at the same time. Particle Image 

Velocimetry (P.I.V.) obviously has a lot of potential, but is still expensive and 
limited to a single plane of the flow at a time (not to mention the considerable 

development that still has to go in that technique). Flow visualisation, on the other 

hand, can give a broader qualitative picture of the flow but lacks the quantitative 

element. 

In this study, the largest number of sensors used simultaneously was seven 

(five pressure transducers and two single hot-wire probes). The deductions and 
theories presented in the previous chapters are based on an appreciation of fluid 

mechanics laws and a general knowledge of the nature of unsteady, Karman 
wakes. It is quite clear, however, that while a lot of useful information can be 

obtained by studying such confined regions of the flow, theories on the actual 
topology of the flow and the instantaneous vortex dynamics can only be based on a 

series of assumptions. 
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Conditional sampling is based on the repeatability of certain flow patterns 

of the wake in order to obtain wider information on its topology and properties. 

Literature reviews have been published by Van Atta (1974) and Antonia (1981). In 

general, the basis of conditional sampling is one or more indicator functions, 

which are compared to data obtained at different times in order to detect similar 

flow patterns. A further discussion on the various techniques of conditional 

sampling will follow later, but initially we must separate the general approach in 

two categories, related to the selection of the indicator function(s): 

a) The indicator functions can be obtained from the actual signals that have to 

be analysed. In such an approach the predominant purpose is to detect repeatable 

patterns, obtain their ensemble average and determine their statistical significance. 

Such a method has been used, among others, by Blackwelder and Kaplan (1976), 

introducing the V.I.T.A. (Variable Interval Time Averaging) algorithm for 

turbulent boundary layers, Browne et al (1986), using a modified V.I.T.A. 

technique for the far wake, Bisset et al (1990a and 1990b), comparing different 

algorithms for the far wake of a cylinder, and Ferrd and Giralt (1989), who used a 

pattern-recognition analysis -strictly speaking not a conditional sampling 

technique- to detect coherent structures in the far wake. We will not go into the 

details of the various different methods here, as they are of no consequence for the 

present investigation (at least an array of cross-wire probes is needed in order to 

obtain any meaningful results, which was not available for this study). 

b) The indicator function(s) can be used as a trigger (when certain conditions 

are met) for the sampling of the signal from an independent sensor to start. 

Depending on the level of sophistication and the nature of the experiment, the 

triggering can be done in real time (triggering the operation of an A-D converter) 

or can be done in the computer analysis phase by selecting the suitable portions of 

the sampled data. The independent sensor(s) can move around the flow volume of 

interest, while stationary sensors obtain the signal to be compared to the indicator 

functions in order to perform the triggering. Such a technique has been used by 

numerous researchers, notably for the near wake by Cantwell and Coles (1983). 

In the present investigation, the technique used (to be described in full 

later) was based on the second approach. 
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7.1.2   The aims of this part of the investigation 

Ideally the results of this chapter should not be presented separately from 

those of earlier chapters. The aim of this study, after all, is to achieve a better 

understanding of the dynamics of the three-dimensional near wake, not the 

development of a new experimental technique. The main aim of the conditional 

sampling experiments was to measure the strength of the Karman vortices for the 

sinusoidal model. The findings are presented later. 

The next sections will highlight some of the drawbacks of the conditional 

sampling experiments performed here. They include the assumptions about the 

spanwise velocity component v (v « V(u2+w2)), the approximations for the 

measurement of reversed flow and errors related to the conditional sampling 
procedure. Later, one more important source of error will emerge, the use of 

Taylor's hypothesis for the calculation of vorticity. Therefore, unfortunate as it is, 
the results of this chapter should be considered in the light of the errors arising 

from these over-simplifications. Hence, although results will be shown later to 
agree well with the theories of the previous chapters, no claim can be made about 

their accuracy. 

A secondary aim of these experiments was to explore the potential of such 

experiments for the study of the near wake. Some proposals for a better 

experimental technique (using equipment not available in this study) are included 

towards the end of this chapter. 

7.2     Description of the conditional sampling technique used 

7.2.1   Fundamental conditional sampling assumptions 

In the present study, the indicator functions were used as triggers, while a 
cross-wire probe collected data in the flow region of interest. The main limiting 

factor that confined us to the second technique was the number of available hot- 

wire anemometers. We will see later, however, that this approach also has some 

advantages and a lot of potential. 

The main assumption of this type of conditional sampling concerns the 

repeatability of flow patterns and the uniqueness of their influence at the points of 

the stationary sensors (the ones that obtain the signal to be compared to the 

indicator functions). To put this in proper perspective, let us consider a flow 
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region of interest R (which, in fact, may not have a finite volume but just be a 
plane or even a line). We now assume that there exists a repeatable flow pattern p 

of interest with duration A. We now consider a series of stationary comparison 
points of the flow Si,S2,.->Sn, at each of which we measure a flow property q 

(this property may be a velocity signal, a pressure signal, another flow property, 

or any function that may arise from such signals). For each of the comparison 

points Sn, we somehow determine an indicator function Fn, which corresponds to 

the flow property qn and is of duration A. There are then two theoretical 

conditions necessary (but not sufficient) for the success of the conditional sampling 

procedure: 

a) Excluding any random contributions (e.g. turbulence, noise, measurement 

inaccuracies, etc.), if we have a time interval [t, t+A] such that: 

q„(t+5)-Fn(6) VSn,Se[0,A] 

then we must have: 

Vaei? : p„ is unique 

Of course, if there exists a small number of possible flow patterns (say, two or 

three) we may still be able to separate them by considering the patterns at adjacent 

points within R. 

b) The second condition relates to the intrusion of the sensor that traverses R. 

In simple terms, the flow distortion due to the sensor must be negligible for all 

points within the volume of interest R and also for all comparison points Sn. 

It should be stressed that the comparison signals q^ were obtained from the 

stationary sensors at the points Sn. The actual flow pattern p would be obtained 

once the best time t (for qn(t+8)=Fn(5)) was determined. The moving sensor 

within the region R would obtain the flow pattern p for one point within R 

(sampling of the moving sensor signal and the signals from Sn would, of course be 

simultaneous). The whole process would be repeated for all the points of interest 

within R, each time obtaining p for one more point. Compliance with the two 

fundamental conditions (a) and (b) would then allow us to combine selected data 

from all the points in order to obtain the flow field within the region R. 
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7.2.2  The selection of the indicator functions 

The selection of the appropriate indicator function is very much dependent 

on the complexity of the flow. In the simplest case we have an accurately 
repeatable two-dimensional flow with a well-defined "time pulse". Such flows may 

be low Reynolds number Kärmän flows. If there is no frequency of amplitude 

modulation in the shedding, a sensor can simply detect the phase of vortex 

shedding and accordingly trigger the sampling. This is an ideal situation, as the 

final ensemble average could stem from a large number of consecutive cycles. 

Other simple flows (purely in terms of selecting a suitable indicator function) 

include cases when an abrupt change is forced on a previously steady flow. An 

example here is the rapidly-deployed spoiler, used by Ho (1991) on an unstalled 

two-dimensional wing section. 

The very interesting work reported in Cantwell and Coles (1983) falls in a 
similar case as far as the selection of indicator function is concerned: they assumed 

a basic repeatability of each shedding cycle and used a triple decomposition 
technique to split the flow into the steady component, the shedding-frequency 

periodic component and the random component. No information was obtained, 

however, about the instantaneous flow. 

The flow around the sinusoidal model is strongly modulated (with all 

vortices not being of equal strength). It is clear from this that the use of a simple 

phase criterion would not be sufficient. The modulation of the flow has to be taken 

into account. Furthermore, we have seen that vortex splitting occurs, which means 

that the shedding is not in phase along the span. The consequence of this is that a 
single comparison sensor would not be sufficient, as it would be primarily affected 

by the phase of shedding at its particular spanwise position. It was thus decided to 
use three indicator functions. All three were velocity fluctuations from stationary, 

single hot-wire probes positioned just outside the wake. The possibility of using a 
fourth signal from a pressure transducer was also examined. Its highly irregular 

fluctuations made it unsuitable for the conditional sampling experiments. 

As the comparison signals were obtained from intrusive sensors, their 

positions had to be outside volume R. Common sense suggests that the closer they 
are to R the easier it will be to satisfy fundamental condition (a). As a result of the 

observations reported in previous chapters, concerning the two shedding modes 

(symmetric-antisymmetric), two of the probes were positioned at adjacent valleys, 
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mainly as a means of mode-detection. The third hot-wire probe was positioned at 

different locations, depending on the experiment. 

The time duration A of the indicator function was selected to correspond to 

about five shedding cycles, in order to capture a full cycle of the dislocation 

frequency. For each experiment thirty sets of indicator functions were selected to 

be compared to the sampled data (i.e. eventually we would have thirty flow 

"pictures", each one being about five shedding cycles long). The selection of the 

best indicator functions was done digitally, by selecting the most repetitive trends 

of duration A, but also taking into account the shedding mode (symmetric- 

antisymmetric). As will be seen later, the comparison of the sampled data to the 

indicator function was based on correlation analysis, and therefore a similar 

procedure was applied to determine the most repetitive trends (in order to select 

the best indicator functions). To be more specific, the algorithm would consider all 

possible indicator signal intervals of duration A, and compare them to the rest of 

the signal of that stationary sensor. The intervals that were found to have the 

highest degree of repeatability were selected to be used in subsequent experiments 

as indicator functions. 

It should be stressed here that the above process is non-critical. The whole 

idea was just to select the most suitable sets of data to be compared subsequently 

with the sampled signal in order to obtain the flow field. Any comparison 

inaccuracies would not arise at this point. Analysis of the repeatability of the flow 

patterns revealed that some would not be repeated frequently enough (to a 

sufficient accuracy) within the length of the A-D converter memory (16384 

samples). Typically, following the application of various techniques to be 

presented later, the flow conditions for each point within R would be the average 

of three independent measurements. In other investigations, ensemble averages are 

usually obtained from thousands of shedding cycles (e.g. Cantwell and Coles 

1983). It should be emphasised once again that the purpose here was to obtain 

instantaneous flow fields, not averages. 

However, the above considerations highlight one important limitation of 

the present experimental set-up. The flow had a poor degree of repeatability. 

Simply collecting more and more data could help solve the problem but was not 

permitted by the computational power and memory (more of which later). 
Towards the end of this chapter a technique to perform on-line data comparison 

will be suggested, which would enable us to obtain averages of a larger number of 

data sets. 
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7.2.3   The comparison process 

For each position of the moving sensor (traversing R), apart from its 

signal, the signals of the three stationary comparison sensors (positioned at points 

Si, S2 and S3) would also be sampled at the same time. Comparison of the signals 

qi, q2 and q3 to the indicator functions Fi, F2 and F3 would enable us to 

determine the best intervals (each of duration A) to be selected from the moving 

sensor signal. This section describes this comparison and selection procedure. 

The basic tool used was comparison by linear correlation analysis. For each 

possible A-interval (starting at q^t) and finishing at qn(t+A)) the correlation 

coefficient rn(t) would be computed between the sampled data qn and the indicator 

function Fn (for zero delay). The correlation coefficient only considered the 

fluctuating part of the signals. A value of +1 shows perfectly correlated signals in 

phase, but there may still be a difference in the r.m.s. value (e.g. fi(t)=Asin(©t) 
and f2(t)=Bsin(©t) are perfectly correlated but clearly not the same). To 

compensate for this a normalising factor cn(t) was computed, defined as: 

..,,-^M 
t+A       

*P2 

 "I1"1 

+ F- 

whence cn(t) will take a maximum value of +1 if the two signals have an equal 

r.m.s. Thus, for each interval of length A starting at time t, we can define the 

degree of similarity to the indicator functions, Q(t): 

Q(t)=[ci(t)*ri(t)][c2(t)«2(t)][c3(t)*T3(t)l 

Perfect similarity for an interval starting at time t would yield a value of Q(t)=l. 

To avoid two negative rn signs giving a positive Q(t), values of rn less than zero 
were set equal to zero. The most efficient way to compute the correlation for all 

possible A-intervals was a spectral method. The FFT of the signal % would be 

multiplied by the complex conjugate of the FFT of the Fn signal (padded with a 

large number of zeros to be of the same length as the % signal). The inverse FFT 

would then give the correlation. 

Typically Q(t) values of about 0.7 were considered satisfactory and would 

be selected for the ensemble average (Q(f)=0.7 corresponds to three correlation 
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coefficient values of about 0.9). Usually, for one set of data there would be an 
average of three instants satisfying this condition. As was said in the previous 

section, this is not a satisfactory number. If there was no interval [t, t+A] 
satisfying the condition Q(t)>0.7 the interval with the highest value of Q(t) 

would be selected. 

One of the problems of this type of conditional sampling is known as 

"phase jitter". This results because the sampling points within the selected A- 

interval will not exactly match the sampling points from the indicator functions, 

i.e. the selected signals within the region of interest R will be shifted by up to half 

a sampling period with respect to one another. Of course, a sampling rate much 

higher than that necessary for the satisfaction of the Nyquist criterion does solve 

the phase jitter problem but reduces our available length of data considerably. The 

solution to this problem was based on the recommendations found in Wills (1991). 

For band-limited signals sampled according to Nyquist's criterion, Wills reminds 

us of the often forgotten implications of the sampling theorem: 

un    AtVh  sin[7r(t-nAt)/At] 
h(t) =At2A ———, 

~ Tt(t-nAt) 

where h(t) is the original signal and hn the sequence sampled at equal intervals of 

At. Effectively, this formula means that, provided the sampling rate is high enough 

and a large number of samples is available, the whole original signal can be 

reconstructed to as close a spacing and as high an accuracy as desired. The above 

formula was first used to double the length of the data. For each pair of 
consecutive samples, the intermediate sample would be obtained. Thus the 

effective memory of each A-D converter channel was doubled to 32768 samples. 

The actual sampling rate (2500Hz), was effectively also doubled to 5000Hz. The 

spectral correlation analysis would be performed on this enlarged set of data (the 

R.A.M. and the speed of the Microway accelerator card were essential for the 

required number of 32768-sample FFT's). 

The indicator function signals had been obtained at a much higher sampling 

rate, at 20000Hz. Each comparison signal was 500 samples long. Of those, 125 

samples (1, 5, 9,...) were used for the initial correlation comparison described 

above, in order to select the best 125-sample interval of the 32768-sample array. 
Once that interval had been determined, it would be compared to other 125-sample 

sets of the indicator function data (set (2, 6, 10,...), set (3, 7, 11,...), and set (4, 
8, 12,...)). From that comparison the phase jitter would be determined and 
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reduced, as the sampling theorem would be used to project the moving sensor 

signal back on to time instants corresponding to set (1, 5, 9,...)- By the above 

technique, phase jitter can practically be eliminated. In the present experiment the 

phase matching would be to within 1% of a shedding period. 

Another concern was whether fundamental conditions (a) and (b) were 

satisfied. Condition (a), concerning the uniqueness of the flow pattern, was 

checked extensively by comparing the appropriate intervals from the moving probe 

signal. Deviations were more attributable to random contributions rather than to an 

altogether different flow pattern, and hence the condition was considered to be 

satisfied. Condition (b), concerning the intrusion of the moving sensor, could not 

be checked easily. One cannot say that the hot-wire probe intrusion is completely 

unimportant but, given the available facilities, not much else could be done. 

7.2.4  The analysis of the moving sensor data 

So far we have reached the point where we are able to select the best part 
of the moving sensor data in order to put together the flow field within R. The 

data reduction from the moving sensor is another complicated area, mainly due to 

the nature of the flow within a near wake. The moving sensor was a cross-wire 

probe, oriented in such way as to record velocities in the x-z plane. The 

inadequacy of a hot-wire probe in the near wake is well known, and basically 

results from the reversed flow (a problem which does not occur in far wake 

flows). The advantages (for the present experiment in particular) of using a laser- 

Doppler system is quite apparent. 

It is probable that the bulk of the experimental error in the measurements 

presented in this chapter results from the use of hot-wire probes. Unfortunately, 
once again, not much else could be done. An assumption was made in that the 

spanwise velocity component was negligible (v « V(u2+w^)). Obviously, in a 

strongly three-dimensional flow this is not true, but it was felt that the benefits in 

attempting to measure the spanwise component would not justify the added 
complication and error. The symmetric shedding mode probably has smaller 

magnitudes of spanwise velocity, and therefore was judged to comply best with the 

v « V(u2+w2) assumption. Hence, the indicator functions chosen (and the results 

presented later) are all for the symmetric mode. 
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Further approximations were made in order to be able to estimate the 

reversed flow. Cross-wire sensors in reversed flow have three main drawbacks 

(added to the standard cross-wire drawbacks such as wire separation, etc.): 

a) The intrusion of the probe holder becomes larger, as in a reversed flow the 
actual sensor lies in the "wake" of the probe holder. This error is probably 

reduced by the unsteady nature of the reversed flow. Due to the unsteadiness of 

the flow the probe holder can probably not develop a steady wake pattern, which 

would increase the error. 

b) In the present experiment the axes of the two wires of the cross-wire sensor 

had nominal direction cosines of (V2/2, 0, V2/2) and (V2/2, 0, -V2/2). For 

straightforward, plane velocity measurements the instantaneous velocity vector 

would have to lie within a 90° envelope, a condition obviously not satisfied in 

unsteady, reversed flow. Thus some further criteria would have to be applied to 

determine the direction of the flow. Conceptually similar criteria to the ones to be 

described below have also been used by Sokolov and Ginat (1992) to measure 

reversed flow using a hot-wire rake ("ladder probe"). 

c) Contrary to the ladder probe used by Sokolov and Ginat (1992), the cross- 

wire probe cannot be calibrated in reversed flow, mainly because of its unsteady 

nature (the unsteady reversed flow conditions would be impossible to simulate in a 

steady calibration process). As a result, the same calibration parameters had to be 

used for all the flow directions. 

The method used to determine flow direction was based on detecting the 

zero crossings of the velocity signal for each of the two wires. Hot-wire signals, in 

general, never show a zero velocity for three main reasons: (a) the zero velocity 

instant is unlikely to be matched by the exact sampling instant of the A-D 

converter, (b) calibration at low velocities is affected by natural convection 

effects, and (c) the low-pass filtering of the signal (necessary in order to apply the 

sampling theorem) may smoothen the abrupt velocity signal gradient change that 

would accompany a zero crossing. Thus a threshold in the velocity signal had to 

be established, more or less by trial and error: when the velocity signal of one 
sensor dropped below that value, a zero crossing was assumed to have happened. 

The threshold used was 0.08U. 

Each of the two signals of the cross-wire probe was analysed separately. At 

the centre wake, where reversed flow occurs more regularly, we have seen the 
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predominant frequency to be twice that of shedding. If we assume that the 
maximum zero crossing frequency can be that double frequency, then up to four 

zero crossings can occur within one shedding cycle. Hence, if this limit was 

exceeded, a secondary procedure would select the four most likely zero crossings 

and neglect the other ones. Furthermore, we would only expect an even number of 

zero crossings within one shedding cycle. If the detected zero crossings were of an 

odd number, the least likely one would be dropped. 

Once the zero crossing instants had been determined for the whole length 

(duration A) of the hot-wire signal, the sign of the signal would be changed for 

each zero crossing (see figure 7.1a). A smoothing function would be applied at the 

position of the zero crossing in order to prevent the abrupt change in value. The 
most frequent pattern observed was of the type shown in figure 7.1b, where two 

zero crossings would occur very close to one another. It should be noted, for both 
figures 7.1a and 7.1b, that the abrupt change in slope of the velocity signal 

confirms that this is indeed a zero crossing, as the reflection of the signal (shown 
in the two figures) subsequently yields a much smoother function. 

What of course remains is the actual determination of the sign at t=0 of the 

A-interval. That was accomplished by first computing the magnitude of the 

average value of the velocity signal at each point within the region R. Depending 

on the experiment, a different criterion was then used to determine the sign of 

each mean value. Where the measurements were along a straight vertical line (the 

experiments described in section 7.3), the values chosen were such that the u and 

w mean velocity components had the smallest second derivatives w.r.t. z. As a 
boundary condition, mean velocity in the outer wake was taken to be in the 

direction of the free stream. Where the measurements covered an entire plane (as 

described in section 7.4) continuity in that plane was applied. The points furthest 

from the model and from the centre wake were taken again to have a velocity 

direction similar to the free stream (and used as a boundary condition to determine 

the directions in the rest of the near wake). 

The methods described in this section, it should be stressed once again, are 

not claimed to record accurately the velocity fluctuations. They were developed 

not as an ideal solution to the problem, but as an engineering solution to the 

limitations of the available apparatus. The errors involved, apart from the ones 
presented earlier, should also include the possibility that the above direction- 

determining criteria fail completely at some times. 
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7.3     The use of Taylor's hypothesis 

7.3.1   Errors involved in Taylor's hypothesis 

The present experiments aim to measure oy (spanwise) voracity. This is 

given by: 

_8w    du 
y     dx     dz 

Taylor's hypothesis is frequently used to transform the x-axis derivative 

into a time derivative. Thus, by using, 

dx       Uc    dt 

(where Uc is the mean convection velocity in the x-direction), vorticity can now 

be expressed as: 

1 ^dw    du 
&y~~Wc    dt~dz 

The obvious advantage of using this transformation is that one may now measure 

the two velocity components along a vertical line only (e.g. with an array of hot 

wire x-probes), and still be able to determine the vorticity. The disadvantage is 

that it is not a rigorous transformation and therefore includes some error. 

Hinze (1975, p.46) gives a useful discussion of Taylor's hypothesis. The 

hypothesis holds if the mean flow field is parallel and constant (in the direction of 

the x-axis), and if: 

V(u-u)2 « u, 

i.e. if the x-velocity fluctuations are very small compared to the mean velocity. 
The physical significance of Taylor's hypothesis is that at any fixed point we 

imagine the velocity fluctuations to be caused by the passing of a "frozen'' flow 

field. 

In the present case, neither of the two main conditions is fully satisfied. In 

our favour, however, is that we may be able to assume that vorticity gets 
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concentrated in discrete "lumps", and thus, within those confined lumps we may 

say that the mean velocity shows a relatively small variation. The velocity Uc will 

then be the velocity at which the formed Kärmän vortices get convected. The 
instantaneous velocity of the vortex centres was used by Takamoto (1986), who 

also used a numerical, viscous core vortex model to estimate the error involved in 

Taylor's hypothesis, concluding that the error was small. 

For the present experiment, at first sight, we could do away with Taylor's 

hypothesis. The cross-wire probe could traverse two (instead of one) vertical lines, 

adjacent to each other, in which case x-derivatives could also be determined. 

However, it was decided that the use of a dubious (for the present flow) hypothesis 

would be better than to double the number of necessary readings using dubious 

apparatus (again, for the present flow). 

7.3.2 Experimental set-up 

The cross-wire probe was made to traverse along various vertical lines in 
order to determine the strengths of the Karmin vortices crossing those lines. These 

lines were at distances from the local trailing edge of h, 1.5h, 2h, 2.5h and 3h. 

The spanwise locations examined were for y/L=0.1 (peak) to 0.5 (valley), in steps 

ofO.l. 

As was mentioned earlier, two of the three hot-wire comparison sensors 

were located at two adjacent valleys, mainly for mode-detection purposes. The 

third sensor was fixed on the vertical arm of the traverse, and lay on the extension 

of each vertical line that was to be examined. The cross-wire sensor moved from 

z/h=-0.333 to z/h=0.75, in steps of 0.0833 (2.5mm). This asymmetry with 

respect to the centre wake (i.e. Zmhi^Zmax) was so mat one °f ^ comparison 
sensors could be as close as possible to the wake, in order to detect fluctuation 

modulations. In any case, the vortex strengths could be calculated from the one 

side of the wake, which was covered by the range of the cross-wire probe. 

7.3.3 Estimation of the convection velocity 

Having decided to use Taylor's Hypothesis, a valid method had to be used 
in order to estimate the vortex convection velocity Uc. An investigation into this 

matter was published by Zhou and Antonia (1992), who compared different 
techniques and criteria but obtained similar results. It is apparent that the most 
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suitable technique for the present investigation would use the data obtained from 
the same experiments. 

Zhou and Antonia used an initial estimate of UC=0.8U, applied Taylor's 

hypothesis and thus obtained the position of the vortex centres. Uc was then taken 

to be the velocity at the vortex centres. The technique used here was based on the 

same philosophy, i.e. taking Uc=(velocity of vortex centre). Again an initial 

estimate UC=0.8U was taken, but the process now involved an iteration: apply 
Taylor's hypothesis, obtain a new estimate for Uc, use the new value for Taylor's 
hypothesis, and so on. 

The vortex centre was determined by fitting (using least squares) a second 

order function (w.r.t. z-co-ordinate and time) to the nine points with the highest 

vorticity for each shedding cycle. Uc was then taken as the weighed average of the 

x-velocities of the four points surrounding the vortex centre. As was mentioned 

earlier, thirty flow field pictures were obtained for each vertical line. The final 

value of convection velocity would then the average obtained from all the vortices 
of these thirty sets, i.e. the average of about 150 vortices. 

7.3.4  Discussion of vorticity contour plots 

All the contour plots presented in this chapter have been obtained by the 
methods outlined above. Apart from the symmetry reasons stated earlier, the 

reason the symmetric shedding mode was chosen for all the measurements was that 
in that mode we had previously observed a clear-cut S=0.24 at the peak and 

S=0.29 at the valley. As a result of using Taylor's hypothesis, the ordinate of 
these graphs is time. If we imagined the transformation x=-Uc*time, and 

transformed the ordinate of the graphs accordingly, the free stream would be from 

right to left. Furthermore, it should be noted that the time-axis and the z/h-axis are 

not to scale (i.e. [z]^[Uc*time]), and thus the vortices appear much more 
elongated in the z-direction. 

Figures 7.2 and 7.3 show the flux of vorticity at different downstream 
stations for the peak (y/L=0) and the valley (y/L=0.5) respectively. The period 

of the vorticity fluctuations corresponds to the observed Strouhal number both for 
the peak (0.24) and for the valley (0.29), and the signs of vorticity are as one 

would expect. Both observations show nothing new, but are reassuring. The two 
sets of plots show some similarities and some differences. 
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Figure 7.2 Variation of vorticity with time, for the sinusoidal model, using Taylor's 

hypothesis. These plots were obtained at the peak. Note how vortices become more spread-out as 

wc move downstream (lower plots), and also the apparent variation in the vortex strength, from 

one vortex to the other. 
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fluctuations in vortex strength, from one vortex to the other. 



VARIATION OF VORTICITY WITH TIME USING TAYLOR'S HYPOTHESIS 

time*U/h 

Figure 7.4 Variation of vorticity with time, for the sinusoidal model, using Taylor's 

hypothesis. These plots were obtained at x/h=l, for different spanwise positions. Note how the 

shedding becomes a little more frequent and much more ordered in the region of the valley. 



VARIATION OF VORTICITY WITH TIME USING TAYLOR'S HYPOTHESIS 

x/h=1.5 

y/L=0.2 

x/h=1.5 

y/L=0.2 

x/h=1.5 

y/L=0.2 

7.5 10.0 

time*U/h 
OJ *h/U : 

|       |    ABOVE 

a 
BOVE 5.00 

4.00- 5.00 

3.00- 4.00 

2.00- 3.00 

0.50- 2.00 

-0.50- 0.50 

•2.00- -0.50 

-3.00- -2.00 

■4.00- •3.00 

-5.00- -4.00 

Figure 7.5 Variation of vorticity with time, for the sinusoidal model, using Taylor's 

hypothesis. These plots were all obtained at the same position (in the vicinity of the dislocation). 
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A common feature of both graphs is the layout of the vortices. Close to the 

body, at x/h=l, the vortices are quite flat and more well-defined. As they move 

downstream the vortices soon get stretched in the vertical direction and become 

more round (it should not be forgotten that the two axes are not to scale). The 

main vorticity on the upper side of the wake is negative. Smaller but also negative 

vortical structures appear for x/h=l close to the centre wake and in anti phase to 

the main, Kärmän vortices (especially apparent for the valley). The origin for 

these structures is unclear, but it should be pointed out that this is the region of 

heavily reversed flow where the experimental method is most likely to fail. It is 

possible that the cross-wire method over-predicts vorticity at the centre of the 

wake with the vortices thus appearing to be closer than expected to the wake 

centre. 

There are, however, some notable differences between figures 7.2 and 7.3, 

other than the shedding frequency. At the peak (7.2), closer study of the contour 

plots reveals that there are significant fluctuations in the strengths of the Kärmän 

vortices, while at the valley (7.3), even though we could not expect the vortices to 

have exactly equal strengths, any variations in the vortex strength appear to be 
much less noticeable. This seems to agree well with the hypothesis presented in 

section 5.2.3. In that section it was suggested that vortex strengths vary from one 

cycle to the next, in balance with both the fluctuating size of the formation region 

and also with the possible tendency of the flow to reduce the number of weak 

vortex links (their existence having been suggested by Williamson, 1992a). The 

spanwise size of each cell was cited as an important parameter for the ability of its 
vortex strengths to fluctuate from cycle to cycle. The low frequency cell of the 

peak has been repeatedly found to be of smaller size than that of the valley, and it 

was speculated that vortex strengths may fluctuate more in the peak than at the 

valley, which seems to fit with the present observations. It should also be noted 

that a conditional sampling method based solely on shedding phase (and not signal 

modulation) could not possibly detect the vortex strength fluctuations. Vortices in 
figure 7.2 appear also to be much less regular (more chaotic) than their 

counterparts of figure 7.3, a fact most probably related to the fluctuation of then- 

strength. 

Figure 7.4 shows a series of contour plots (all obtained for a distance from 

the local trailing edge of x/h= 1) moving from the peak to the valley. The gradual 

transition from the relatively disordered state of the peak to the ordered state of the 

valley is apparent. Less obvious is that the wake is wider at the peak than at the 

valley. 
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Figure 7.5 presents different plots obtained from the same flow location, 

close to the estimated position of the dislocation. In chapter 5, a main issue had 

been the spanwise, periodic motion of the dislocation, probably at a frequency fy 

(=f2-f1). If this is indeed the case then, most of the time, we would expect a 

spanwise position to exist where the shedding alternates between fi and f2- This is 

confirmed by figure 7.5. The lower two plots have noticeable regions where the 

time between successive vortices is smaller than is usual in the other plots. For 

example, the reduced time between the second and the fifth vortices of the top plot 

is about 12.2 (corresponding to S=0.25), while between the first and the fourth 

vortices of the bottom plot it is approximately 10.0 (corresponding to S=0.3). Of 

course we should remember that the bandwidth of the spectra was wide to allow 

deviations of that order («0.01) from the two Strouhal numbers of 0.24 and 0.29. 

7.3.5  Estimation of vortex strengths 

The average strengths of the vortices were obtained from numerous results 

such as those presented in figures 7.2 to 7.5. Of more relevance, of course, to the 

results presented in earlier chapters was the mean flux of voracity (of one sign, 

negative in this case). In that way we would be able to see what fraction of the 
circulation shed from the model's trailing edge survived vortex formation. The 

results presented later are averaged for about 150 shedding cycles for each location 

of the flow studied. 

Two criteria have to be established: (a) there has to be a criterion to decide 

whether a certain flow particle (containing some voracity) belongs to a Kärmän 

vortex or not, and (b) once the first criterion has been established, there also has 
to be an accurate determination of the time interval over which a certain whole 

number of Kannan vortices pass the line of the sensors (for example, if we look at 
figure 7.5 top, the number of whole vortices does not spread over the length of the 

plot, and to find the correct total vorticity flux, total voracity would have to be 
calculated for a whole number of shedding cycles). Although the Taylor's 

hypothesis time-distance transformation has no real physical relevance for the 
present study (in the sense that although vortices are assumed to pass our reference 

line in a "frozen" state, we can obviously not expect them to be in the same state 
further upstream or downstream), the time co-ordinate was transformed into 

distance in order to compute the vortex strengths. 

The first criterion (used to determine the extents of the vortices) first starts 

by detecting the peaks of the Karman vortices. To determine the extent of the 
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vortices, we start to move radially outwards from each peak, until a certain 

threshold value of vorticity is reached (0.2 of the maximum level of vorticity). 

This is then taken to be the limit of the Kärmän vortex. This is repeated for many 
radial directions, in order to establish the complete Kärmän vortex boundary. The 

threshold value unavoidably had to be determined by trial and error but was 

chosen so that the vortices would have a fairly round shape (i.e. would not extend 

into the random, non-Kärmän vortical structures of the wake). 

The second criterion depended on detennining vortex centres. The method 

used was described in section 7.3.3 (used there for the determination of the 

convection velocity). Once the peaks had been established, the total Kärmän 

circulation between the leftmost and the rightmost peak for each A-interval would 

be divided by the appropriate time elapsed between those two peaks. 

7.3.6   Discussion of wake parameter results 

The results of this section would fit better in chapter 6 (the dynamics of the 

three-dimensional formation region). As was stated earlier in this chapter, the 

reason they are presented separately is the uncertainty concerning their accuracy. 

Flux of spanwise vorticity was calculated as described in the previous 

section and is plotted in figure 7.6a. The most prominent feature is the significant 

decay of vorticity flux (and hence vortex strengths) as we move downstream. As 

Kärmän vortices move downstream, they become more diffuse and start to interact 

with their counterparts from the other side of the wake. The rate of decay does, 

however seem a bit excessive. The possible cause could lie in the criterion used to 

determine the boundary of the vortices. Although for similar conditions we could, 

perhaps, expect the percentage error resulting from this criterion to be of the same 

order, it is probable that different percentage errors arise for different "kinds" of 

vortices. 

We have postulated previously that an important parameter is the strength 

of the Kärmän vortices just after vortex formation is completed. At that stage 

vortices will not yet be so diffuse as to interact with the opposite side of the wake, 

but will also have to link-up in some plausible way. Vortex strengths were thus 
evaluated by interpolation from graph 7.6a at x=lf+0.1h, i.e. just after formation 

(the constant of O.lh was not used to "adjust" the results, but to bring the value of 
x within the range of figure 7.6a, for all the spanwise positions). The dotted line 

of graph 7.6b shows the variation of vorticity flux along the span.  For 
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comparison, the continuous line represents the vorticity shed at the trailing edge, 
evaluated from the base pressure. Clearly, the amount of surviving vorticity 

appears to be much more constant (along the span) than the vorticity at the trailing 

edge. This result justifies the main assumption of chapters 5 and 6, that vortex 

looping does not occur and that d(Srv)/dy=0. 

A cautionary note should be made here about graph 7.6b. Obviously the 

results agree fully with suggestions and assumptions of previous chapters, a rather 

surprising fact, considering the errors that accumulate in the determination of the 

vortex strengths. It is proposed here that the suggestions of the previous chapters 

are reasonable and can stand without the results of this chapter. The fact that 

errors (unavoidable, given the available facilities) are involved in this chapter does 

not disprove figure 7.6b, nor does it disprove the main assumptions concerning 

vortex looping and vortex strengths (d(Srv)/dy=0). Now the good agreement 

(despite the plethora of errors) between figure 7.6b and the d(STv)/dy=0 

assumption could be due to the fact that the percentage error (overprediction or 

underprediction) is of a similar order for all spanwise locations. 

The fraction a of surviving vorticity (as defined in chapter 6) can be 

deduced from figure 7.6b. The relation of fraction a to the formation length (If) is 

shown in figure 7.6c. Quite simply, when the formation length increases, we have 

increased entrainment and thus more vorticity destruction (as was suggested in 

chapter 6). It should be pointed out that the relationship shown in figure 7.6c is 

probably not unique. We have seen that the wake width (wf) is also an important 

parameter related to the fraction a, perhaps a bit less significant than the formation 

length. 

The convection velocity of the vortices was determined by using the 

methods described previously (in section7.3.3, mainly to be used for Taylor's 

hypothesis). Its downstream evolution, for the different spanwise locations, is 

shown in figure 7.6d. The general trend here seems to be the same for the 

different spanwise positions, with the convection velocity increasing as the vortices 

move away from the model. At a distance x/h=l from the trailing edge the 

convection velocity is about 0.63U, gradually increasing to about 0.79U at x/h=3. 
Generally speaking, the convection velocity has been known to increase with 

downstream distance from the body, in theory starting from very small values 
during formation and then gradually tending towards the free stream velocity, far 

downstream. Bearman (1967b) reported on measurements obtained for a similar 
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model (with a blunt trailing edge, but without the sinusoidal disturbance) and the 

results were of a similar order to those of this chapter. 

The downstream increase of the convection velocity could also be partly 

related to the downstream decay of the vortex strength. If we consider an ideal, 

infinite Kärman vortex street, the velocity induced on each vortex opposes the free 

stream. When the vortices become weaker (downstream of the model, as shown in 

figure 7.6a) they will tend to induce lower velocities on each other, and hence 

their convection velocity will tend towards the free stream. 

7.4     Near wake instantaneous vorticity 

7.4.1 Experimental set-up 

An experiment was also performed which aimed to obtain the flow field in 

an entire plane. In that way Taylor's hypothesis would not have to be used for the 

determination of vorticity. Considering all the limitations of using hot-wire sensors 

in the near wake, this experiment was conducted mainly in order to see the 
potential of conditional sampling to obtain complicated, three-dimensional flow 

fields. 

The three comparison hot-wire probes were located at valley-peak-valley, 

while the only plane studied was the vertical plane passing through the peak. The 

choice of that plane was for symmetry reasons, in order to assume that the 

spanwise velocity component is negligible (v « V(u2+w2)) when the shedding 

mode is symmetric. The size of the plane covered by the cross-wire probe was 

quite small (x/h=0.4 to 1.8, z/h=-0.5 to 0.5). Even for this small region, the 
amount of data that had to be sampled and analysed was quite large, of the order 

of 150Mbytes. 

7.4.2 "Visualisation" of a complete shedding cycle 

The calculated vorticity data had to be smoothened for the vortical 

structures to appear more coherent. A complete shedding cycle is shown in the 

sequence of figure 7.7. 

At t*U/h=0 we can see a forming vortex at the upper side of the wake, 

which starts to break away and seems to have been fully shed by t*U/h=l. 

Meanwhile, vorticity has started to roll-up on the other side of the wake, gradually 
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INSTANTANEOUS SPANWISE VORTICITY CONTOURS   (cont/ 
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Figure 7.7       Step-by-step capture of one complete shedding cycle: the vorticily distribution in 

the near wake of the peak of the sinusoidal model. 



becoming more apparent from t*U/h=0.667 to t*U/h= 1.333. This vortex 

continues to grow until t*U/h=2.667, when it appears to have broken away (and 

thus we arrive again at the beginning of the cycle at about t*U/h=3.667. 

Vortices also appear at the centre wake, close to the body (very noticeable 

at t*U/h=4, for example). They probably arise due to the limitations of the 

experimental technique in the near wake. Furthermore, it should be pointed out 

that, although vorticity appears to be roughly where we would expect it to be (i.e. 

in the forming vortices that then break away), we can by no means be certain of 

the geometrical properties of the vortices, which appear to have an irregular shape. 

7.5     Conclusions 

7.5.1   The near wake parameters 

From the fluid mechanics point of view, the main purpose of this part of 
our investigation was to measure the strength of Karman vortices. This was 

performed using conditional sampling, hot-wire anemometry and Taylor's 
hypothesis, each one of those factors by itself being able to undermine the validity 

of the results for the present application. Therefore the results of this chapter have 

been presented as "indications", not "proofs". The main indications stemming 

from part of the investigation were: 

a) d(Srv)/dy=0. The vorticity flux at each side of the wake after formation 

was found to be constant along the span. This was in agreement with the main 
assumption of both chapters 5 and 6. As a result, a larger proportion of the 

circulation shed at the trailing edge was found to have survived at the peak than at 
the valley, which yielded figure 7.6c, a relation between surviving vorticity and 

formation length. 

b) Vortex strengths were found to vary from cycle to cycle (contradicting 

Williamson's 1992a hypothesis that all Karman vortices within a cell have the 

same strength). This was observed more at the peak than at the valley (where the 

cell is larger and stronger). This was in agreement with the theories presented in 
chapter 5, concerning vortex linking across the dislocation and the fluctuation of 

vortex strengths at the dislocation frequency. 
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c) Indications emerged that the dislocation does indeed move in the spanwise 

direction. At y/L=0.2, there were instants where the shedding was at the low 

frequency and other instants when it was at the high frequency. 

d) Vortex strengths were found to decay significantly as we moved away from 

the model. 

e) Vortex convection velocity was found to rise as we moved away from the 

model. 

7.5.2   Conditional sampling potential 

In spite of experimental errors that were unavoidable given the available 

equipment, the present chapter gave some indications of the possible potential of 

conditional sampling for three-dimensional near wake studies. This section will not 
reiterate the shortcomings of the available apparatus, but make a few suggestions 

for well set-up future conditional sampling experiments. 

The most important addition in terms of equipment would be a three- 

dimensional Laser-Doppler Anemometer. This would have the advantage of not 

being intrusive and also have the ability to measure reversed flow accurately. For 

the comparison signals hot-wire probes are adequate in terms of performance, as 
they can lie outside of the wake. A larger number of signals could have 

advantages. 

The importance of comparing not only phase but also modulation cannot be 

emphasised strongly enough. The memory requirements of conditional sampling 

experiments where the comparison is performed after the experiment are huge. 

Similarly, on-line comparison within the computer would make experiments 

unreasonably long. A large step forward would be achieved if the comparison 

could be achieved on line at the A-D converter stage. For example a device could 

have in its memory the indicator functions and would perform continuous 

correlation with the incoming comparison signals. When all comparison signals 

recorded a certain level of correlation, data acquisition would be triggered 

(modern A-D converters can record data before the trigger, a feature necessary for 

the above procedure). The characteristic frequencies of the flow (up to a few kHz) 
are low enough to allow such an experiment. One more advantage of on-line 
correlation comparison would be that a higher degree of similarity between the 

indicator function and the incoming signal could be attained. 
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It is believed that with these two main additions (and with an experimental 

layout conceptually similar to the one used in the present experiment), fine details 

of three-dimensional near wake dynamics could be measured with accuracy. 
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8.        NON-KARMÄN VORTICAL STRUCTURES 

© ABSTRACT : Vortical structures in the x- and z- directions have been observed. 

z vortices are present in the near wake. It is suggested that they first get entrained 

into the shear layer (with the creation of ©x vorticity) and then roll-up around the 

Kärmän vortices. It is further proposed that the observed vortices are responsible 

for the intense base pressure fluctuations and gradients, and also for thin "wisps" 

appearing between Kärmän vortices in flow visualisation. 

8.1     Introduction 

8.1.1   Observations in other investigations 

When the flow around a bluff body separates, vorticity created on the body 

surface is shed downstream. We have seen how an instability causes this vorticity, 

initially contained within the separated shear layers, to reorganise itself into 

coherent structures. For bodies with a base (the area bounded by the separation 

line) of larger aspect ratio than about 2-3, the reorganisation of vorticity can take 

the form of the Kärmän vortex street. In the simplest case, a Kärmän vortex has 

all its vorticity in the y-direction but there can be also components in the x- and z- 

directions when three-dimensionality prevails. All the vortical structures we have 

discussed so far are Kärmän vortices, irrespective of any vortex splitting that may 

take place. Even though the most dominant wake structure is the vortex street, 

other types of vortices have also been observed in wake flows. Some examples 

are: 

a) Turbulence, the most obvious and common example, present in all but the 

very low Reynolds number cases. 

b) Transition waves within the separated shear layer. These are caused by a 

Kelvin-Helmholtz instability within the shear layer and have been observed in a 

number of studies. Figure 1.2 showed flow visualisation pictures from Gerrard 

(1978). 

c) CDZ vortices in the near wake, observed by Rockwell (1992 and private 
communication). These are shown in figure 8.1. Vorticity contours were obtained 

by P.I.V. (Particle Image Velocimetry) in water at a Reynolds number of about 
2000. Note the alternating sign, spanwise organisation of the oz vortices. More 

details about the structure of these vortices were not known at the time of 
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Figure 8.1 mz vorticity measured in Lehigh University, using a P.I.V. technique. These 

pictures show the centre-wake planes for the flow behind a non-uniform cylinder (flow is from 

left to right). Similar patterns were observed by Rockwell for uniform cylinders (Rockwell, 

1992). 



communication. The strength of the vortices was not necessarily constant from one 

shedding cycle to the other. Somewhat surprisingly, these vortices were said to 

have strengths comparable to those of the Karman vortices. 

8.1.2  The present study 

Figures 4.20 and 4.21 illustrated large base pressure irregularities that were 

said to be one of the reasons for the low base pressure correlation length (in 

comparison with the velocity signal correlation length). In these graphs we can see 

periods of intense activity in the base pressure fluctuations when large 

instantaneous base pressure gradients would also arise. The existence of coz 

vortices in the near wake (similar to those observed by Rockwell) could neatly 

explain this phenomenon. 

P.I.V. facilities such as those used by Rockwell to observe the near wake 

©z vortices were not available in this study, and so flow visualisation experiments 

were performed. Both types of experiment (base pressure fluctuation 

measurements and flow visualisation) were carried out for both the straight and the 

sinusoidal model. There was no noticeable influence of the body shape on the 

observations, and so only the straight trailing edge results are presented in this 

chapter. 

It was thus the purpose of this part of the investigation to search for near 

wake coz vortices and any other related vortical structures. Understanding their 

structure, apart from explaining the base pressure fluctuations, could have certain 

implications on the formation region vortex dynamics discussed in chapters 5 and 

6. As will be seen, near wake ©z vortices are smaller structures than the Kannan 

vortices. It is difficult to say whether they should be classified as "turbulence". As 
was stated in chapter 1, the dividing line between turbulence and larger structures 

is very thin and not well-defined. No attempt will be made in this chapter to give 

an answer to that question. 

As a final cautionary note, it should be stressed that the investigations 

presented in this chapter are of a very preliminary nature. To draw more certain 

conclusions about such smaller scale structures would require a considerably more 

complicated and expensive experimental set-up. 
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8.2     The structure of non-Kärmän vortices 

8.2.1   Observation of z-axis vorticity 

The flow visualisation technique used was described in section 3.3.2. In 

this particular experiment, the tin strip was positioned on the model base. Creating 

the precipitate in the unseparated boundary layer would have confined the 
precipitate within the separated shear layer which has vorticity that predominantly 

reorganises into Karmin vortices, thus concealing the lower vorticity structures of 

the near wake. In the present arrangement, however, the precipitate would first 

diffuse from the base into the near wake and then get carried away by the Karmän 
vortex street. 

The laser sheet was deflected by a mirror located far downstream of the 
model (50h). It was adjusted to illuminate z=constant planes (e.g. z=0 is the 

centre wake). The fluid motion predominantly highlighted by the laser sheet would 
be within those planes, thus giving an impression of coz vorticity, when the camera 

looked down along the z-axis. Note also that due to the unclear water and the 

remoteness of the laser source the illuminated "plane" was about 2-3mm thick. 

Figure 8.2 shows a series of photographs obtained using the above 

arrangement (as always the pictures were processed from a video). At the centre 

wake (photos a and b) we can see tin precipitate that has diffused from the model 

and been distorted by the complex velocity patterns in the near wake. We should 

always remember that there is no direct link between precipitate concentration and 

vorticity (especially in this case when the precipitate does not necessarily get 

created in the same location as vorticity). Nevertheless, from photos (a) and (b) 
we can see how the precipitate has been twisted by near wake vorticity. This 

twisting was even more apparent when studying the video. 

Similar patterns can be seen in photos (c) and (d) which represent a 

z=(l/6)h section of the wake. We can thus conclude that these structures are, in 

fact, similar to those observed by Rockwell. Photos (e) and (f) represent a 

z=(l/3)h section. Again at this plane similar structures could be observed. We 
should make a note about photo (f), where very little seems to be happening. At 

the other planes there would also be prolonged intervals when there was no 

apparent near wake ©z vorticity. This could possibly fit in with the periods of low 
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Figure 8.2 Flow visualisation for the straight model (plan view, precipitate produced at 

model base, flow is going upwards). Laser sheet illuminates z=constant planes. Photos (a) and 

(b): z/h=0, photos (c) and (d): z/h=0.167, photos (e) and (f): z/h=0.333, and photos (g) and (h): 

z/h=0.5. 



base pressure fluctuations and pressure gradients observed at some parts of figures 
4.20 and 4.21. 

Photos (g) and (h) have been taken for z=(l/2)h, i.e. at the level of the 

separated shear layer. Obviously we would not expect the near wake ®z vortices to 

extend that far and this can also be seen in the photographs. What probably 

happens is that the vortices, under the influence of the shear layer, bend around 

and get entrained in it, thus getting convected downstream. At the centre of photo 

(g) and at about 2/5 from the left of photo (h) we can see what could be the 

entrainment of the near wake ©z vortices into the shear layer. 

8.2.2   Observation of streamwise vorticity 

If we are to assume that vorticity gets bent around from the shear layer, we 

then have a shear layer which carries not only y-vorticity but also x-vorticity, even 
though we would expect x-vorticity to be less uniformly distributed that y- 

vorticity. An experiment was set-up to observe such streamwise vorticity, other 
than the component which invariably arises during vortex splitting. Tin precipitate 

was created in both of the unseparated boundary layers of the model. The laser 

sheet was adjusted to be parallel to the model base, and different x=constant 

planes were studied. The video was shot looking upstream, through the mirror 

positioned 50h downstream of the model. The major disadvantage of this 

arrangement was the long path of unclear water between the laser sheet and the 

camera. Photographs obtained using the above procedure are shown in figure 8.3. 

For illuminated planes with x<h, the shear layers could be seen, and 

although they had the occasional ripple and waviness, no clear vortical structures 

could be observed. Clearer cox vortical structures were observed for x>h, i.e. after 

the vortex formation position. From the photographs we can see the ©x vortices 

becoming larger and clearer as we progress downstream (a&b: x=h, c&d: 
x=(4/3)h, e&f: x=(5/3)h, g&h: x=2h). Again there are periods with much 

reduced activity. Even though there are isolated vortices (e.g. in photo f), the 
predominant feature seems to be pairs of vortices of opposite signs. This can be 

seen in (b), (d), (e) and (h), and could be related to the array of oppositely-signed 

©z vortices observed by Rockwell in the near wake (if these vortices are entrained 

by the shear layer, as suggested earlier, we could then also expect ©x vortices of 

opposite signs to be adjacent to each other. 
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Figure 8.3 Flow visualisation for the straight model (rear view, looking upstream). Laser 

sheet illuminates x=constant planes. Photos (a) and (b): x/h=l, photos (c) and (d): x/h=1.333, 

photos (e) and (f): x/h=1.667, and photos (g) and (h): x/h=2. 



There was also the impression that the streamwise vorticity would get 

entrained together with the shear layer into the forming vortex. The 

inhomogeneities observed along the length of Kärmän vortices could then be partly 

due to the x-vorticity found in the shear layer. 

8.3     Closing remarks on non-Kärmän vortices 

8.3.1   Some brief thoughts on the possible structure of non-Kärmän vortices 

So far we have observed ©z vortices in the near wake and ©x vortices 

downstream from about x=h onwards. We have also observed these vortices to 

have a higher degree of irregularity and also to be of smaller scale than the 

Kärmän vortices, facts that make them considerably more complicated in their 

experimental study. It is apparent that the observations of this chapter are 

incomplete. Not enough evidence has emerged about the structure and the origin 

of the non-Kärmän vortices that were observed. 

There are indications, however, that the near wake ©z vortices and the ©x 

vortices are related. Photo 8.2h probably shows an ©z vortex getting entrained into 

the separated shear layer. In that way the shear layer will also contain ©x vorticity, 

which could then form the cox vortices observed in flow visualisation. If we now 

imagine the shear layer rolling-up into a Kärmän vortex, we would then expect the 

©x vortices to follow suit. At the time when the forming vortex gets cut-off from 

the shear layer, there must also be some consequences on the ©x vortices. Now 
vortices cannot get cut in half along their axis and so, if we are to assume that 

something like that happens to the ©x vortices, we must adequately explain how 

©x vortex lines link to other vortices, in order not to violate fundamental fluid 

mechanics laws. There are probably various different and possible accommodating 

mechanisms but one process seems to be the most probable. 

©x vortices could roll-up around the Kärmän vortex, but not actually 

break-up. In that case the Kärmän vortex would get shed in the normal way but 

leave behind it thin "wisps" of ©x vorticity. These would roll-up in one of the next 
forming Kärmän vortices, either the next one (of opposite sign) or the next one of 

similar sign. Looking back to flow visualisation pictures of earlier chapters, thin 
links between Kärmän vortices have been observed. They can be seen in most plan 

views of the wake (for both models) but most notably in photos 4. lOd, 4. lOe, 

4.22d and 4.23c. In the previous section we saw that, in general, ©x vortices tend 

to form pairs of opposite signs. This could be quite significant in terms of their 
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influence on the strengths of the Kärmän vortices: the effects of two (paired) ox 

vortices could effectively cancel each other out. 

We have thus seen a possible geometrical structure of the a>x-©z vortices, 

but even if the above suggestion is correct, we still have to explain the origin of 

this vorticity. Batchelor (pages 277-282) gives a theoretical account on the 
generation of vorticity. The main conclusion is that for a uniform fluid where 

motion has started from rest, vorticity has to diffuse into the fluid from a solid 

boundary. In the present case flow visualisation and fluctuating base pressure 

observations showed that the presence of the near wake ©z vortices is intermittent. 

We saw how periods of intense coz activity could be superseded by relatively 

"quiet" periods. This means that oz vorticity does not only get generated at the 

initiation of the flow, but can also arise in a fully-developed flow and also possibly 

vanishes when the conditions allow. 

8.3.2   Outstanding questions 

As was stated at the beginning, this chapter presented work that was of a 

very preliminary and speculative nature. Some ideas were presented concerning 

their structure, but considerably more effort has to go into this area for certain 

conclusions to be reached. Perhaps the most important consequence of the non- 

Karmän vortices to the present study is that their presence can account for the 

large spanwise base pressure gradients observed in the wind tunnel. Many more 

questions have been left unanswered, however: 

a) What is the exact geometry of the ©z and the ©x vortices and how are they 

related? 

b) What are the strengths of these vortices? 

c) What is the significance of the pairing patterns observed? 

d) Which model surface is the source of this vorticity, and what instability 

causes it? 

e) What is the reason for the apparent intermittency in the "activity" of the 

non Kärmän vortices? 

We could think of many more questions that are still far from answered 

concerning the non-Kärmän vortices. It is apparent that much more comprehensive 

investigations into that subject are needed. The present study merely scratched the 
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surface of that potentially large subject. Many thanks are also due to Professor D. 
Rockwell, of Lehigh University, for his invaluable discussions on the subject. 
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9.        THE INTERACTION OF NEAR WAKE PARAMETERS 

ABSTRACT : In summarising the proposals of previous chapters, a systematic 

method is proposed in order to sub-divide the near wake problem into smaller 

modules. The various significant frequency ranges of the flow are considered to 

represent different levels of hierarchy. By neglecting weak interactions of wake 

parameters, it is possible to view the flow as a system controlled by instructions 

and feedback fed between the different wake parameters and the various levels of 

hierarchy. 

9.1     Modular sub-division of the flow 

9.1.1   The frequency scales of wake flows 

Looking back to the theories of the previous chapters, we can see that 

chapters 5, 6 and 8 each concerned a particular frequency range. In chapter 5, 

wake dynamics were studied from the point of view of fluctuations at the 

dislocation frequency, in chapter 6, mean wake characteristics were considered, 

while chapter 8 looked into smaller scales of fluid motion. Each of these chapters 

thus looked at the flow from a different perspective, taking certain facts for 

granted and not elaborating on the consequences of some other features. 

It is, of course, an undeniable fact that for a strongly non-linear physical 

system such as a wake flow, one must consider all effects together. It is difficult to 

think of two wake features that do not depend on each other. For a complete 

understanding (both qualitative and quantitative) of the dynamics of the flow we 

would need to solve the Navier-Stokes equation down to its smaller scales. 

Chapters 5 and 6 (and to a much lesser extent, chapter 8), however, have given 

what appear to be satisfactory explanations of various flow phenomena despite 

considering limited aspects of the flow at any one time. 

The purpose of this study is to understand some of the physics of the wake. 

Although this approach will not be considered to be very rigorous from a 

mathematical point of view, we will attempt to assess the influences of the 
frequency ranges separately. In the model to be proposed in the present chapter, 

the interaction between the various frequency scales will be macroscopic, but not 

negligible. To illustrate this approach, let us consider how it would attempt to deal 

with the two-dimensional flow around a circular cylinder at a very low super- 
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critical (Re«50-60) Reynolds number (this example not aiming to explain that 

particular flow). Such a flow would have mainly two characteristic frequencies: 

f=0 and the shedding frequency. The shedding frequency characteristics would be 

controlled by a series of steady, unchanging parameters, such as base pressure, 

formation length, wake width and vortex strength. The mechanisms which actually 

prevail at the shedding frequency would have to move within this framework, and 

are reasonably understood. Some form of feedback could readjust the steady wake 

parameters should an imbalance arise. 

In the flow around the sinusoidal model, we have more or less identified 

the various important frequency ranges: 

a) The dynamics of the mean flow parameters were discussed in chapter 6. 

Perhaps the biggest contribution of this chapter was the realisation that, given the 

geometry, the dual frequency characteristic has to exist. 

b) Fluctuations at the dislocation frequency (presented in chapter 5). In this 

chapter the emphasis was on the mechanisms that spread the dislocation frequency 

disturbance to practically all the near wake parameters. 

c) Fluctuations at the actual shedding frequency. Perhaps ironically, for a 
Kärmän wake flow study, these effects are only considered macroscopically and 

not in much detail in the present study. 

d) Smaller scale vortical structures (briefly presented in chapter 8). 

e) Turbulence (not necessarily very distinct from (d)). 

It should be noted that considering the effects of the various frequency 

ranges separately does not imply some kind of spectral solution to the Navier- 

Stokes equation. For example, let us consider the mean characteristics of a flow, 

where vortex shedding would still be taken into consideration. In a solution to the 

steady Navier-Stokes equation, the main assumption would be that shedding 

frequency fluctuations do not exist. Under the proposed approach to the flow, 

vortex shedding is seen as the consequence of the equilibrium between mean flow 

properties (such as formation length, wake width, base pressure, etc.). The 
assumption here is that one shedding cycle does not depend much on the previous 

one, but rather its parameters are set by slower varying factors. 

The aims of such an approach are to give a qualitative explanation of the 

dynamics of the wake, the main advantage being that it helps put the flow 
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parameter interactions into a proper perspective. In order to simplify the 

considerations, parameters that are not judged to have a direct and pronounced 

effect on each other are simply "uncoupled" from each other. 

9.1.2  A systematic approach to the interaction of wake parameters 

So, it is generally accepted that almost all wake parameters are interrelated 

and linked to each other. In order to gain a better understanding of the 

fundamental mechanisms of the near wake, we will discard all weak links and 

dependencies, and only consider dependencies of primary importance. A 

convenient way to do that is by considering the separate frequency ranges. 

An approach like this allows us to view the flow as a system of interacting 

parameters and to draw relevant block diagrams that outline the important 

dependencies within the near wake. The attraction of a block diagram is that it 

makes it easier to appreciate the various fundamental relations between all the 

relevant parameters. This chapter is, in effect, a summary of the theories and 

suggestions of the present study, in the context of the proposed systematic 

approach to the near wake problem. 

We can perhaps view the various frequency ranges as different levels of 

hierarchy. Not all of them are of the same importance for the eventual overall flow 

pattern. Let us imagine a periodic pattern within one of the frequency ranges. In 

relation to patterns of much smaller time scales, it is difficult to imagine that it 

depends on the exact instantaneous state of the smaller time scale pattern; at best, 

it will feel the time-averaged effect of the smaller time scale pattern. On the other 

hand, if we consider the influence of a slower-varying pattern, the exact 

instantaneous state of this slow pattern will be influential. Hence, the different 

hierarchy levels are in the order of the time scales of the various frequency ranges 

(i.e. the mean flow is the highest level of hierarchy). 

The whole approach is similar to the dynamics of a large organisation 

where instructions circulate between the various levels of the hierarchy. Not all 

levels have access to all the information. "Instructions" are fed downwards and are 

influenced by feedback going upwards. Similarly, other "decisions" have to be 
taken in order to balance two (or more) conflicting trends within the company. 
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9.2     A model for the interaction of wake parameters in the present flow 

9.2.1   High hierarchy level: mean flow parameters 

The block diagram of figure 9.1 is effectively a summary of chapter 6, 

showing the interaction of the mean flow characteristics. In the main section of the 

diagram, angular, "property" boxes represent various wake parameters, and 

rounded boxes represent explanations justifying the relation between some of the 

property boxes. Note also the significance of the arrows, outlined in the key at the 
bottom of the diagram. The main features of the diagram are outlined below. 

As a result of (a) the tendency of the forming vortices to straighten out, 

and (b) the model geometry, the formation length will have to be larger at the 

valley. To satisfy S*rv=constant along the span, and as a result of the higher 

level of entrainment (because of the longer formation length), the vorticity shed 

from the separation point at the valley must be larger, and similarly then we will 
expect the base drag to be higher at the valley. As the wake curvature of the 

separated shear layer is related to the base pressure, the wake will have to be 

wider at the peak than at the valley. 

Now wake similarity arguments can be used to predict the mean shedding 

frequency along the span. It is proposed that the selection of the two shedding 

frequencies is due to a spanwise lock-in, which results in the domination of two 
frequencies. A natural progression then is vortex splitting, as is a streamwise 

component of vorticiry, said to be vital to sustain a steep pressure gradient across 
the dislocation. 

The main "instruction" passed on from this hierarchy level to the 

dislocation frequency dynamics is the magnitude of the two shedding frequencies. 

A variety of other instructions (combined with others arising from the dislocation 
frequency hierarchy level) also get passed on to the shedding frequency hierarchy 

level. 

A feedback is received from the dislocation frequency hierarchy level, 

which determines the spanwise motion of the dislocation. In that way, mean value 

distributions of quantities like base pressure, shedding frequency and wake width 

can be predicted by considering the time spent by each spanwise position at each 

shedding frequency. Not shown in figure 9.1, are numerous feedbacks received 

from the shedding frequency level: in a way, a large number of the general rules 
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used for the logical progression from the one box to the other are some kind of 

feedback from the shedding frequency dynamics (e.g. the relation between the 

formation length and the fraction of surviving vorticity). It is interesting to note 

the macroscopic nature of this feedback: the exact dynamics that determine this 

particular relation (or other relations) are of no interest or consequence. 

Obviously, a lot of over-simplifications exist in the proposals outlined by 

the block diagram of figure 9.1. If we thought more about it, good reasons could 

perhaps emerge to add a lot more boxes and arrows linking all the possible 

combinations of boxes. The diagram is not intended as a "solution" to the myriads 

of simultaneous equations that need to solved in the wake, but a framework that 

helps explain the main interactions and influences between some of the wake 

quantities. 

9.2.2  Intermediate hierarchy level: dislocation frequency parameters 

This section will, in effect, be a summary of the mechanisms described in 
chapter 5 in the context of the considerations outlined just above. Figure 9.2 is a 

block diagram showing a possible way that the dislocation frequency parameters 
interact. The emphasis is not on the exact relation between two parameters, but on 

the physical reasons behind that interaction. 

On the top of the figure we have parameters that belong to the higher 

hierarchy level and arrive in the form of "instructions". For example, the reason 

why there are two shedding frequencies is not the issue, but is taken for granted in 

this diagram. The middle section of the diagram (and also the largest) is a block 

representation outlining the routes of interaction of the parameters that are affected 

by the dislocation frequency fy. More "instructions" emerge from this section and 

are passed to the lower section of the diagram, which represents the shedding 

frequency hierarchy level dynamics. 

We will briefly go through the logical stages of the central portion of the 

diagram. All the quantities fluctuate at the dislocation frequency. As a result of the 
two shedding frequencies, vortex splitting occurs. Geometrical considerations on 

how the vortices link across the dislocation mean that vortices have to bow in its 
vicinity, which is conceptually equivalent to the formation region fluctuating in 

size. In turn this results in dislocation frequency base pressure fluctuations, and 

consequently, in unequal vortex strengths from cycle to cycle. 
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In order for two vortices (on either side of the dislocation) to meet, they 

both have to bow. The quantity of bowing that goes to each cell depends on the 

flexibility of each cell to change its vortex strengths from cycle to cycle, which, in 

turn, depends on the mean cell size (which was information received from the 

higher hierarchy level). A balance has to exist between these parameters in order 

to obey a fundamental rule, that the sum of the vortex strengths on either side of 

the dislocation is the same (given that no vortex looping occurs). A further 

parameter that may influence the vortex strengths is a possible tendency of the 

flow to adjust in such a way so to minimise the weak vortex links. 

The fact that the bowing of vortices on each side of the dislocation tends to 

be in the opposite direction (again for geometrical reasons) means that a periodic 

spanwise pressure gradient could arise across the dislocation, again fluctuating at 

the dislocation frequency. This could be the reason the dislocation seems to move 

back and forth in the spanwise direction. 

9.2.3   Lower hierarchy levels 

It is clear from section 2.1 ("Aims of the project") that a detailed study of 
the lower hierarchy levels was not one of the primary aims of this investigation. 

Too many studies in the past have described (in much detail) the shedding 

frequency fluctuations, for this study to have something to add. The small 

deviation into smaller time-scales (the non-Karman vortical structures of chapter 8) 
did not yield sufficient information for a systematic approach to the dynamics of 

that frequency scale. Within the framework of the systematic approach of this 
chapter, we can speculate on how some of the lower hierarchy levels may 

function. 

At the shedding frequency level, a significant assumption is that one 

shedding cycle is only influenced very lightly from its immediate predecessor. Its 
main parameters are controlled by the two higher hierarchy levels: depending on 

the spanwise position and the instantaneous position of the dislocation, the 

shedding frequency is decided. Further steady and unsteady (fj) interactions 

determine parameters such as the formation length, wake width and vortex 
strength. From a fluid mechanic point of view, we could expect, in the event of 

some imbalance (e.g. if the level of entrainment, base pressure and vortex strength 

do not balance out), the present shedding cycle to influence its successor. Within 

the context of the proposed approach, this matter could be dealt with in the 

following  way:   the  imbalance  would be  fed  upwards  by  some  feedback 
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mechanism, adjusted in the high hierarchy level, and then fed back to the next 

shedding cycle (with an "instruction"). 

Moving down one more level, it was suggested in chapter 8 that the non- 

Karmän vortical structures arise from an instability either within the near wake 

region of within the separated shear layer. Cross flow due to a pressure gradient 
could also play an important role. If we had a better idea of these mechanisms we 

could, perhaps, use a similar, systematic model to show the dependence of the 

non-Karmän structures on the higher hierarchy levels. Similar arguments should 

also apply for the generation of turbulence. Again, the influence of these effects 

on higher hierarchy levels would be macroscopic. 

9.2.4  Limitations of the proposed "systematic" approach 

The very brief entry into the lower hierarchy levels highlighted one major 

drawback of the proposed systematic approach. There seems to be a general 

inability to deal with chaotic effects (that invariably appear in the small scales of 

fluid motion). The block diagrams of figures 9.1 and 9.2 almost seem to suggest 

that a detenninistic model can solve the three-dimensional near wake problem. 

It is quite clear that this is not the case. If we forget the actual interactions 

illustrated in figures 9.1 and 9.2, it becomes apparent (simply by the sheer number 
of parameters that need to be balanced) that some form of chaos should prevail: 

the number of interacting parameters makes it improbable that a non-chaotic, 

repeatable trend would emerge. The degree to which a repeatable trend can be 

found is in a way an indication of the level of chaos. 

At low Reynolds numbers (say, Re< 150), where turbulence is not present, 

a balance between the various wake parameters seems to be obtained with relative 

ease, and thus the shedding cycles are highly repetitive. If we now imagine that 

(through the addition of extra parameters, e.g. turbulence) more conditions have to 

be satisfied, it is possible that the overall balance will not be achievable within one 

shedding cycle. At this stage there may arise a modulation in the vortex shedding, 

and the flow will have made a step towards less repeatability and more chaos. It is 

thus clear that the proposed "systematic" approach cannot (through its 
deterministic nature) extend into a detailed description of chaos and irregularity. 

However, it is hoped that it can help for a better (and more important, clearer) 

understanding of some of the physics of the wake. 
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This inability to describe flow irregularities would also be demonstrated if 

we were to construct a similar diagram for the straight trailing edge model. 

Ironically, the straight trailing edge model seems to produce the more irregular 

flow of the two, mainly because of the intermittent nature of its three-dimensional 

irregularities (three-dimensional patterns are more regular for the sinusoidal model 

where the trailing edge shape fixes them in both time and space, as we have seen 

previously). Hence, the systematic approach of this chapter would show 

weaknesses if it were to tackle the straight trailing edge problem. 

Interestingly, the degree of irregularity and unrepeatability of complex 

three-dimensional flows is yet one more important handicap of CFD for such 
flows. Compared to low Reynolds number, two-dimensional flow simulations, 

simulations of flows such as the one of the present study would not only need 

solution of a much larger number of simultaneous equations (arising from the 

three-dimensional grid): For results to have any significance, much longer 

simulation times would also be needed. 
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10.      CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER 

WORK 

10.1   Overview of the results of this investigation 

10.1.1 The approach used in the present study 

This work set out to investigate the three-dimensionality of near wakes at 

high Reynolds numbers. A blunt trailing edge model was used for the 

experimental investigation. Two main configurations were studied, a straight 

trailing edge model (i.e. a two-dimensional geometry) and a sinusoidal trailing 

edge model, with the trailing edge shape serving as a geometric disturbance in 

order to induce and control three-dimensionality in the wake. 

In the light of the results presented throughout the previous chapters (to be 

summarised in the present chapter), a significant conclusion is that the choice of 

the model was justified. With the points of separation not moving, one 

complicating factor that is present for the circular cylinder (which would be of 

secondary importance for this investigation) was eliminated. A further important 

element of this work was the level of entrainment within the separated shear layer. 

The physics of that was also kept as simple as possible because of the model 

section shape: the interaction of the part of the model submerged into the wake 

with the separated shear layers was as small as possible. Therefore, even though 

the chosen model shape has fewer engineering applications than, say, a circular 

cylinder, it showed significant advantages when it came to meeting the initial aims 

of this project. 

Using this model, numerous experiments were conducted and theories put 

forward. The emphasis was on drawing general conclusions about the physics of 

the near wake, not specific details of the particular flow around the model, 

although some interesting features were observed and are outlined below. 

10.1.2 General flow pattern characteristics 

Most of these results were presented in chapters 4 and 8. The most notable 

feature of the flow around the sinusoidal model was the dual vortex shedding 

frequency characteristic. Two frequencies (fi and f2, where f2>fl) were 
observed by using spectral analysis. The higher frequency dominated at the valley 
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while at the peak there was a "coexistence" of the two frequencies (and the 

conditions would change gradually when moving from the peak to the valley). 

This observation suggested that vortex splitting must occur in the wake of the 

sinusoidal model (and hence the flow was strongly three-dimensional). 

Measurement of base pressure revealed that for the sinusoidal model there 

was a significant drop in base drag along the whole span of the model (compared 

to the straight edge model). This feature was more apparent at the peaks than at 
the valleys. An important observation was that the stronger the three-dimensional 

disturbance was, the larger the decrease of drag. This could fit in well with the 

fact that drag is over predicted by two-dimensional computational codes (the 

inherent three-dimensionality of real flows could cause a decrease of the drag). 

Flow visualisation in the water flume showed that more than one shedding 

mode exists for the sinusoidal model. Vortex splitting would occur regularly in the 

region of the peak, but at the two neighbouring valleys vortex shedding could be 

in phase (symmetric mode), or out of phase (three-cell antisymmetric mode). A 
two-cell antisymmetric mode and an oblique mode were also observed in the water 

flume experiments, but there was no evidence of their existence in the wind 
tunnel. No conclusions could be drawn concerning the lifespan of each of the 

modes, but it is believed that transition from one mode to another has to follow 

gradual changes, and hence cannot happen between any combination of modes. 

Further flow visualisation experiments indicated the existence of smaller, 

non-Karman vortical structures. ®z vortices were observed very close to the model 

base. It is possible that they get entrained into the separated shear layer to form the 

ax vortices that were also observed. The thin wisps linking successive Kärmän 

vortices could then have their origin in the ©z vortices of the near wake. There 
were also indications that both the ©x and the ©z vortices tend to occur in 

alternating sign patterns, or in pairs (of opposite signs). The complexity of the 
non-Karman vortical structures did not permit this study to approach this subject in 

more than a fairly superficial way. Their observation could not be complemented 
by more than vague hypotheses concerning their structure. 

Nevertheless, for the present study, the observation of non-Karman vortices 
served to provide a possible explanation for the very irregular base pressure 

fluctuations measured in the wind tunnel. Spanwise correlation of the base 
pressure fluctuations had been found to be much lower than that for the velocity 

fluctuations. This was caused by large and irregular base pressure gradients which, 
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in turn, could be due to the near wake ©z vortices. Correlation lengths of about 4h 

for the straight edge model (measured using two hot-wire probes), suggested that 

three-dimensionality was a key feature despite its two-dimensional geometry (and 

three-dimensional features were also observed for the straight edge model in the 

water flume). 

10.1.3 Near wake dynamics for the sinusoidal trailing edge model 

In chapters 5 and 6 (both based on the observations for the sinusoidal 

model) general ideas about the dynamics of the near wake were proposed. Due to 

the nature of these chapters (discussion of the physics of wake flows) they are of 

primary significance for this work. 

It was proposed that the presence of the dislocation frequency f<j in the 

spectra (where fd=f"2-fl) is primarily the consequence of the interaction of the 
body with the near wake. The dislocation in the present flow appears because of 

the two different shedding frequencies at the peak and at the valley. In general, for 

vortices to join with similarly-signed vortices on the other side of the dislocation 

(which at times may be 180° out of phase), they have to bend. It was proposed 

that this bending causes % fluctuations in the formation region size, which in turn 

results in the observed base pressure f(j fluctuations. A result of this would be the 

varying strength of the Karmän vortices from one cycle to the next. These simple 

suggestions have a few significant implications. 

First, the spanwise size of each of the two neighbouring cells must 

influence the extent to which vortex strengths can vary from cycle to cycle (i.e. 

for a large cell, formation region size and base pressure fluctuations cannot spread 

over a large spanwise distance from the dislocation). This would imply that the 

smaller cell is the one that changes the strengths of its vortices most easily. It is 

conceivable that the vortex strength fluctuations may contribute to the reduction 

(or, sometimes, elimination) of the weak vortex links. 

Second, the fact that, in order to meet across the dislocation, vortices from 

the two sides have to bend in opposite directions, implies that the shrinking and 

growing of the formation region size may be in anti phase across the dislocation. 
We would expect to find a similar pattern for the base pressure, and hence we 

arrive at the conclusion that there will be a base pressure gradient across the 

dislocation, fluctuating at the dislocation frequency. 
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Further suggestions were made in chapter 6 that eventually explained why 

there had to be more than one shedding frequency. The starting point of that 

discussion was the tendency for the vortices to straighten out. That meant that at 

the valley the formation length would be larger than at the peak. As a result, the 

level of entrainment at the valley would be larger, and hence the fraction of the 

surviving vorticity would be smaller. In order for the circulation within the 
Kärmän vortices to be constant along the span (a result of no vortex looping), 

more vorticity would have to be shed from the trailing edge at the valley. Thus we 

arrived at an explanation for the higher base drag of the valley (when compared to 

the peak). 

It was further proposed that suction within the formation region causes the 

shear layer to deflect inwards. Thus, the high suction (high drag) of the valley, in 
combination with the long formation length would imply a narrower wake at the 

formation point for the valley than for the peak (also observed in experiments). 

Wake similarity arguments were also used to predict the mean shedding 

frequency along the model's span. By using the wake width (instead of the base 

height) and also the separation velocity (instead of the free stream), a good 

collapse of Strouhal number was achieved along the span of the model. With these 
considerations it was shown that a single frequency could not exist along the 

model's span. It was suggested that a form of spanwise "lock-in" could cause the 

discretisation of the shedding frequencies. 

Evidence also emerged that there must be a constant, strong base pressure 
gradient across the dislocation. This could be sustained by the streamwise vorticity 

lying within the dislocation. The periodic fluctuation of the dislocation position (at 
the dislocation frequency-described previously) would then serve to smoothen out 

any steep wake property changes across the dislocation, in order to produce the 

measured time-averaged values. 

10.1.4 Further notes 

Further conclusions also emerged in the following areas: 

a) Quasi-two-dimensionality. Most of the theories outlined above used quasi- 

two-dimensional considerations. In spite of the obvious fact that strong three- 

dimensionality prevails, these theories seemed to produce quite good results and 

explanations. We should never forget that the flow is three-dimensional; however, 
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using quasi-two-dimensional arguments to obtain a qualitative understanding of 

some flow features has been demonstrated by this study to be quite valid. 

b) Systematic approach to the wake problem. In chapter 9 a model was 

proposed in order to subdivide the wake problem into smaller "modules". It was 

suggested that we can consider different levels of hierarchy that determine the 
nature of the flow. The hierarchy levels corresponded to the important frequency 

ranges. The main philosophy of this approach is that the high frequency/small 

scale features receive detailed instructions from the higher ranks (e.g. each 

shedding cycle has to "see" how strong the Kannan vortex has to be, depending on 

the phase of the dislocation frequency fluctuations, and react accordingly). On the 

other hand, higher ranks (low frequency/larger scales) only perceive the smaller 

scales macroscopicalfy. The advantage of this approach is that it eliminates weak 

interactions between unrelated wake parameters and thus allows us to concentrate 

on the important features of the wake. 

c) Conditional sampling technique. Experiments performed using conditional 

sampling were not accurate enough for the results to be included in the main 

discussion of this work. However, given proper apparatus, conditional sampling 

seems to be an important technique if we are to understand the fine structure of 

wake flows. 

10.2   Recommendations for further work 

No research program can claim to produce definitive answers to all 

problems, and the present study is no exception. A number of questions were left 

unanswered and also new questions emerged from the proposed theories of this 

study. 

We should perhaps view the particular flows of this study as tools that 

aided us in our understanding of the near wake dynamics. Numerous questions 

directly concerning these flows were left unanswered. Unless it is judged that 

significant information could still be extracted from these flows, it seems more 

reasonable to diversify, rather than to elaborate too much on understanding "all" 

the details of this particular flow. After all, the important thing is our better 

understanding of the general laws governing wake flows; flow details around 
models with no direct engineering application are only of secondary importance. 

We will therefore not discuss unanswered questions about the particular flows, but 
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put them in a proper context for more general research projects. Possible research 

areas of interest that emerged are: 

a) The proposals of chapters 5 and 6 were based on the sinusoidal model but 

should hopefully be adaptable to other body geometries. It would be interesting to 

check their validity for other flows, and also to expand them to cover a larger 

number of flow parameters. Interesting examples include non-periodic mild 

geometric disturbances, isolated disturbances, free ends, etc. 

b) The approach of this study to the non-Kärmän vortical structures was very 

superficial. A better understanding of their structure would be vital in order for us 
to obtain a more complete picture of the three-dimensionality of wakes. This area 

seems to be very fruitful and demanding, as it has not been the subject of many 

studies. 

c) The detailed structure of vortices linking within the dislocation has not yet 
been understood (especially at high Reynolds numbers). More advanced 

experimental facilities could help us appreciate many more dislocation features and 
hopefully incorporate them into the theories proposed in this study. 

d) The alternative form of dislocation (vortex looping) has not been 
considered in the present investigation. It was demonstrated how a simple 

constraint of vortex splitting (d(S*rv)/dy=0) can have such large consequences on 

the wake dynamics. It would be of great interest to see how a similar constraint of 

vortex looping could affect the wake. 
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